

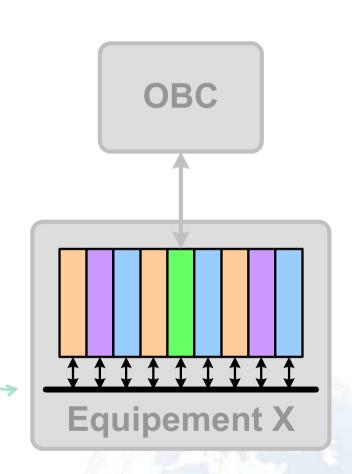
WE LOOK AFTER THE EARTH BEAT

CAN in Space Workshop: CAN backplanes and DPC ASIC

ESTEC March 10, 2016

Thierry Van Humbeeck

ThalesAlenia


Ref.: LP-NUM-PPT-16019

THALES ALENIA SPACE INTERNAL

What are the needs?

➤ TM/TC exchange on a bus

- ~ Reliable
- EMC friendly
- Simple & low cost
 - Development & recurrent cost
- Low power consumption
- Modularity
 - Multicast feature
 - Synchro & time distribution feature
- Interoperability

Ref.: LP-NUM-PPT-16019

Thales Alenia
A Thales / Firmaccarica Corriginy Space

Why CAN?

CAN has won the trade-off (CAN – SpaceWire – UART – SPI – I²C …)

-> Widely used in automotive – good supply chain Reliable

EMC friendly ------ Slow physical layer

Simple & low cost Simple physical layer – only 2 wires

Modularity ------ Layered protocol approach: no need of unused feature

Multicast feature -----

Synchro & time distribution -> 🗸

Interoperability ------ Standardized – Well supported by commercial tools

CAN is not perfect: limited 1Mbps bitrate, no galvanic isolation

10/03/2016

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed

to any third party without the prior written permission of Thales Alenia Space - @ 2016, Thales Alenia Space

CAN useful features

- Layer organization
 - Mandatory features available off-the shelf
 - Only implement useful services

	OSI Model Layer	Function	Relevant services
	7. Application	Access to the services	TC transfer TM acquisition
	6. Presentation	Data management	Object Dictionary
	5. Session		CANOpen SDO
	4. Transport	Communication management	Expedited Domain transfer
			Block Up/Download
	3. Network	Access to modules	Framing
		Acceptance filtering	
不	2. Data Link	Data encapsulation	
<u>></u>		Frame coding (stuffing)	CAN ISO 11898-1
ato		Acknowledgement	
Mandatory		Specification variation (STD/EXT)	
		Bit Encoding/Decoding	
	1. Physical	Synchronization	Physical transport
₩		CAN High Speed	

10/03/2016

Ref.: LP-NUM-PPT-16019

THALES ALENIA SPACE INTERNAL

CAN useful features

The PHY layer

- Variety of standard off-the-shelf transceivers
- EMC friendly smooth waveform transitions
- Simple:
 - 2 wires
 - Accurate impedance control & connectors <u>not</u> required
- Differential high common mode rejection
- Asynchronous
 - ±1% ~ ±3% node clock deviation allowed
 - Crystal oscillator not mandatory

8Tq ≤ T_bit ≤ 25Tq				
Тq				
Sync seg	Prop_seg	Phase_seg1	Phase_seg2	
		Sample	e point	

OSI Model Layer	Function	Relevant services
7. Application	Access to the services	TC transfer
7. Pipipilikasitikiri	Access to the services	11M acquisition
6. Presentation	Data management	Object Dictionary
5. Session		CANOpen SDO
4. Transport	Communication management	Expedited Domain transfer
		Block Up/Download
3. Network	Access to modules	Framing
	Acceptance filtering	
	Data encapsulation	
2. Dana Link	Frame coding (stuffing)	CAN ISO 11898-1
	Acknowledgement	
	Specification variation (STD/EXT)	
	Bit Encoding/Decoding	
1. Physical	Synchronization	Physical transport
	CAN High Speed	

10/03/2016

Ref.: LP-NUM-PPT-16019

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2016, Thales Alenia Space

CAN useful features

The data link layer

- Variety of standard off-the-shelf IPs
- Take care of the message transmission & error handling

The service layer « CANopen » (optional)

- Up to now, TAS-B has used:
 - Object dictionary
 - COB-ID for service addressing
 - PDO/SDO messaging protocols
 - SYNC for TM/TC synchro between modules
 - TIME for TM time stamping

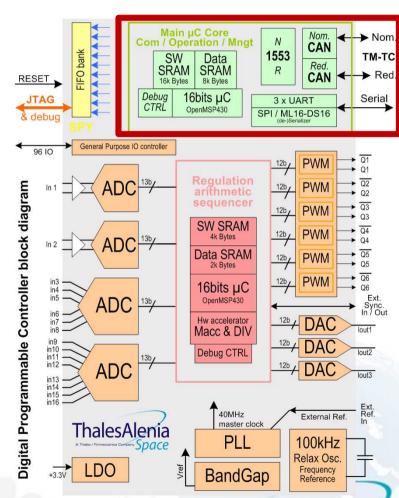
OSI Model Layer	Function	Relevant services	
7 Auntinotion	Access to the services	TC transfer	
7. Application		TM acquisition	
6. Presentation	Data management	Object Dictionary	
5. Session	Communication management	CANOpen SDO	
4. Transport		Expedited Domain transfer	
		Block Up/Download	
3. Network	Access to modules	Framing	
	Acceptance filtering		
	Data encapsulation		
2. Data Link	Frame coding (stuffing)	CAN ISO 11898-1	
	Acknowledgement		
	Specification variation (STD/EXT)		
	8it Encoding/Decoding		
1. Physical	Synchronization	Physical transport	
	CAN High Speed		

10/03/2016

Ref.: LP-NUM-PPT-16019

THALES ALENIA SPACE INTERNAL

A Theless / Finniscourses Company Space


CAN backplane implementation with the DPC ASIC

- 3 x 16bits OpenMSP430 CPUs
- 42kB memory
- RC oscillator + 120MHz PLL
- LDO +1.8V Accurate Vref
- 4 x 12 bits 1Msps ADCs + input MUX
- 4 x 12 bits 1Msps DACs
- → 6 x dual PWM generators
- Support for **CAN**, 1553, SPI, I²C, UART
- Radiation hardened
- US export constraint free

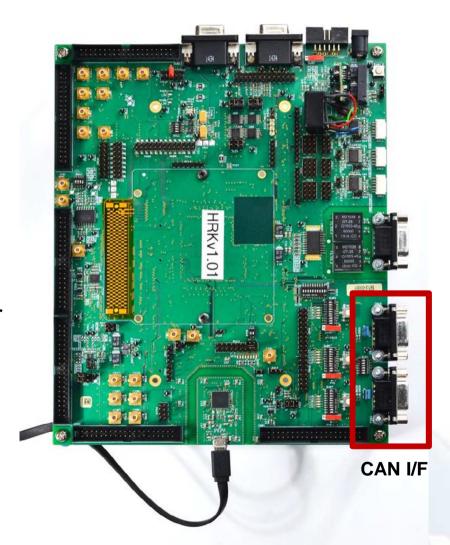
Ref.: LP-NUM-PPT-16019

CAN backplane implementation with the DPC ASIC

- Off-the-shelf transceiver
- Hardwired CAN IPs (2x)
 - Supervised error handling Used in master-slave
- CANopen in firmware
 - Re-usable code

OSI Model Layer	Function	Relevant services	Implementation
7. Application	Access to the services	TC transfer TM acquisition	
6. Presentation	Data management	Object Dictionary	
5. Session		CANOpen SDO	
4. Transport	Communication management	Expedited Domain transfer	Firmware
		Block Up/Download	
3. Network	Access to modules	Framing	
	Acceptance filtering		
	Data encapsulation		
2. Data Link	Frame coding (stuffing)	CAN ISO 11898-1	DPC CAN IP
	Acknowledgement		
	Specification variation (STD/EXT)		
	Bit Encoding/Decoding		CAN transceiver
1. Physical	Synchronization	Physical transport	1Mbps
	CAN High Speed		Tivibps

16bits TxRx


10/03/2016

Ref.: LP-NUM-PPT-16019

Fast prototyping & FM development process

- Prototyping means
 - HW: reference kits ready-to-use:
 - DPC ASIC
 - CAN transceivers (x2)
 - Access to all DPC features
 - Firmware: tool chain
 - Tool chain framework
 - Re-use of CAN communication controller
- Fast prototyping
 - Focus on the new application
 - CAN interface (HW & firmware) ready

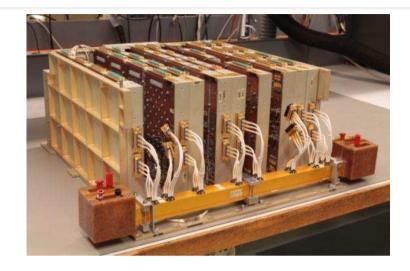
Thales Alenia
A Theless / Firmescoence Company Space

Fast prototyping & FM development process

After prototyping: FM design

- Use of existing building blocks
 - Reference PBA designs or mezzanine
- CAN interface (HW & firmware) ready
 - Focus on new applications
 - No re-design
 - Standard & stable back-plane I/F
 - Stable routing of complex function
 - Firmware upload & validation at DPM level
 - Easier teaming agreements
 - Risk management

Ref.: LP-NUM-PPT-16019

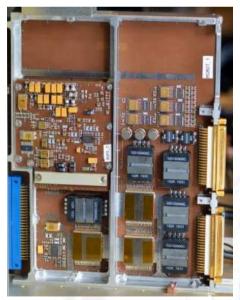

THALES ALENIA SPACE INTERNAL

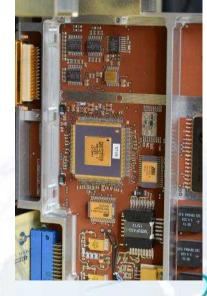
Thales Alenia
A Thalas / Firmaccarica Company Space

Example of existing modules with CAN interfaces / backplanes

HIGH POWER AVIONICS

- Modular PLDIU & PFDIU for SB NEO
- Full power distribution and avionics
- CAN backplane bus
- DPC based solution




Qualif foreseen Q4'2016

MEDIUM POWER AVIONICS

- Application programs:
 - CERES & SWOT
 - With partners
 - Exomars CRTU
 - With partners
 - Others

10/03/2016

Ref.: LP-NUM-PPT-16019

THALES ALENIA SPACE INTERNAL

Summary

- The CAN perfectly fulfil backplane TM/TC needs
 - Flexible
 - Simple Low cost Low power
 - EMC friendly
- Versatile programmable building blocks available
 - Including development means (HW & SW)

Thanks!

