

Cleansat

BB28

Deorbit of LEO Platforms by Advanced Arcjet Technologies for Clean Space Institute of Space Systems (IRS)

24/05/2016

Description of proposed technology Building Block

Arcjets

- Arcjets are compatible with chemical propulsion systems (fuel flexibility).
- I_{sp} of arcjets closes the gap between chemical thrusters and HETs.
- High TPR (~100 mN/kW) + thrust compared to HETs and GITs.
- Better suited for collision avoidance, direct re-entry.

Baseline considerations	Design options for arcjets
Green propellants (ADN, HAN, H ₂ O ₂ , Helium):	 Limited comparability (many options contain oxygen). Technical issues (electrode erosions) with oxygen must be resolved. Already basic He storage and distribution infrastructure on many S/C (synergies)
HET / GIT:	 Arcjets compatible with Xenon, but very poor performance. Ammonia-based stand-alone subsystem?
Hydrazine / ammonia:	Arcjets fully compatible with either.Sharing tanks, feed lines etc.

÷

Description of proposed technology Building Block

Applicability range

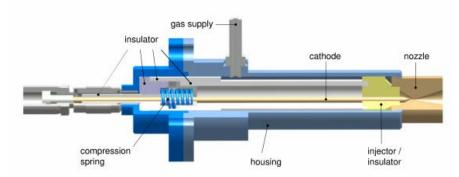
- Collision avoidance for S/C in LEO.
- Direct, controlled re-entry for medium and heavy S/C from LEO.
- "Fast tasks" in general
- Deployment for operational + end-of-life manoeuvres (graveyarding / deorbit).

System level impacts

- Adapting arcjets to the existing infrastructure (He / green propellant).
- Using Helium: storage technologies already qualified, minor modifications to propellant-feeding system necessary, for economic use, higher tank pressures required than for mere pressurants.
- Alternative: ammonia or hydrazine arcjet subsystem.
- Additional PPU mass. Power budget constraints?

*

Development


Development

- Definition of mission requirements regarding "high-thrust" manoeuvers.
- Derivation of requirements for the propulsion subsystem.
- Systematic comparison with alternative approaches (i.e. HET-based deorbiting systems)
- Feasibility analysis of arcjets with respect to mission and system requirements.
 - Identification of maximum S/C mass for safe evasive manoeuvring.
 - Identification of maximum orbit altitude for direct re-entry.
 - Total mass and volume of the propulsion subsystem.
- Overall system mass of different configurations.

Main technical challenges

- He propellant storage.
- Operation test with hydrazine (safety).
- Operation with (oxygen-containing) green propellants.
 - Coated or
 - C/C cathodes

