

cleansat

BB23 Wireless Temperature Sensing LEONARDO

24/05/2016

Description of proposed technology Building Block

- Wireless (Radio Frequency) sensors as replacement of the wired sensors (essentially thermistors) for temperature measurement on board a spacecraft
- Active and passive sensors' technologies as candidate solutions
- Potential applications are:
 - In-orbit use for intra-spacecraft temperature monitoring
 - In-orbit use, outside the spacecraft, e.g. for temperature monitoring on solar arrays
- Baseline design is active sensors inside and passive sensors outside the satellite
- Trade off between active sensors and passive sensors:
 - Active sensors (with internal battery and active circuits) are more performant but less robust against the environment
 - Passive sensors (with neither battery nor active electronic circuits) are more robust but less performant. The complexity is moved from the sensor to the reader and the interrogation signal

Description of proposed technology Building Block

- The proposed wireless technology may be applied to various satellite classes with different orbits (LEO, MEO and GEO), being the temperature monitoring function a common need
- The primary benefit consists in the installation flexibility of the sensors, with less harness constraints and also with AIT cost reduction
- Very effective in moving parts with slip rings elimination in rotary joints (e.g. solar arrays)
- A general mass saving is also expected for the whole system when compared to the existing wired temperature sensor solution due to harness reduction
- A small increase in power budget will take place due to the consumption of the reader or receiver unit which collects the temperature data from the sensors
- The RF communication between the sensors and the reader is one of the key design driver, in particular for intra-spacecraft use, where the RF propagation is affected by multi-reflections and multipath conditions within cavities with metal walls

Development

- The technical areas to be focused during the development are essentially those related to system level operation:
 - Reliable operation (RF communication) in the frame of the specified environmental conditions, i.e. metal walls cavities with avionic equipment installed in, for intra-spacecraft application
 - Electromagnetic compatibility with the existing electronic systems, especially in terms of:
 - Radiated emission of the wireless system (which may disturb other systems)
 - Radiated susceptibility of the wireless system (RF noise of the satellite which may interfere with the wireless sensors)

