

Cleansat

BB#16 IDT: Independent Deorbiting Trigger GMV

24/05/2016

E II = ≝ = II II = = = # = II II = = II ₩ II

European Space Agency

Description of proposed technology Building Block

Technology Goal: increasing the reliability of the end of life disposal

- Currently percentage of disposal success required 90%
- Low-cost add-on module permitting increasing this figure with low impact at system level
- Not a de-orbiting technology per se, but a bus independent electronic system that triggers the deorbit systems already installed on the spacecraft in case of failure of the primary activation system
 - Ground commanded or autonomous triggering will be traded off
- Trade-offs to find a compromise between range of applicability & BB complexity
 - Different deorbit technologies and failure modes will be studied to define the associated requirements for the BB
 - A mapping of technological solutions vs de-orbiting strategies will be addressed
 - The BB shall maximizing the applicability range being as generic and flexible as possible, i.e. not being specifically linked to any de-orbiting technology/strategy, spacecraft class or orbital range
 - The BB could be also potentially used as passivation device, i.e. activating a predefined sequence of events to passivate the S/C before disposal
 - A study case (specific de-orbit solution and SC class) will be more deeply analyzed

= II 🛌 == + II = 😑 == II II == = == II 🖬 🖬 🖬 == II 🚟 II 💥 🙌

Description of proposed technology Building Block

- The BB will be composed of (minimum requirements):
 - Simplified communication system: Rx, sharing antennas with main system or, if deemed necessary, mounting a dedicated omnidirectional antenna
 - Miniaturized data handling system: micro OBC managing TC reception and handling, post mission disposal triggering, passivation sequence triggering (if any), etc.
 - Independent power system limited to a primary battery with a lifetime of few days
 - Interfaces to the disposal device and to the power generation system
- Some AOCS software functionalities could be also included, e.g.:
 - Safe mode using minimal spacecraft hardware like magnetotorquers and magnetometers
 - Spin-up mode for solid rocket motor de-orbiting
 - 3-axis stabilization for chemical or electric propulsion de-orbiting (increasing complexity)
 - Interfaces to the AOCS units shall be provided to the BB in this case
- System level impacts:
 - Very small mass and power budget foreseen (~few hundreds of grams, small volume, few Watts)
 - Technical risks: false triggering to be avoided by design
 - Programmatic risks: no important constraint foreseen in the development plan of the main mission

Development

- Three possible options identified for the design and development of the BB
 - Re-use of standard space qualified equipment: low development risk, but high recurrent costs
 - Development of ad hoc system: higher development cost but lower recurrent costs, higher development risk wrt. previous option
 - Reuse of cubeSat technology with delta qualification campaign: higher development risk but significantly lower recurrent cost
 - Decision will depend on the final BB requirements and its area of applicability
- The main technical challenge will reside in developing a BB maximising the range of applicability with respect to:
 - Bus architectures and protocols
 - Failure modes
 - De-orbiting devices
 - De-orbiting procedures (e.g. need to control the spacecraft during disposal)

*