

An In-Orbit Active Debris Removal Mission – RemoveDebris

Dr Jason Forshaw, PhD CEng

Surrey Space Centre, UK
Surrey Space Centre PM for RemoveDebris Mission
j.forshaw@surrey.ac.uk

Plenary session, ESA Clean Space Industrial Days

12:30 - 13:00

24th May 2016

- Low cost ADR mission to demonstrate, de-risk and mature key ADR in-orbit technologies
- An R&D science / engineering project with an in orbit research component
- A European Commission FP7 project, €13 million¹
- 9 Partners, over 60 staff
- Project duration: 3 years
 Project start: late 2013
 Launch: early 2017
- Technologies and payloads demonstrated
 - capture technologies with a net and harpoon
 - de-orbiting technologies with a drag augmentation sail
 - proximity rendezvous operation technologies with vision-based navigation and LiDAR
- One chaser (main platform) which holds the payloads. Two targets (CubeSats) which are ejected to test the technologies

Partners

Prof Guglielmo Aglietti Surrey Space Centre, UK Principal Investigator g.aglietti@surrey.ac.uk Mr Simon Fellowes Surrey Space Centre, UK Consortium Project Manger s.fellowes@surrey.ac.uk

BordeauxMr. Thierry Salmon

Les Mureaux Mr. Eric Joffre

*Toulouse*Mr. Thomas Chabot

*Bremen*Dr. Ingo Retat
Mr. Robert Axthelm

Stevenage Mr. Mark Roe Mr. Andrew Ratcliffe

Mr. Andy Stock Mr. Andy Phipps

Mr. Cesar Bernal

Dr. François Chaumette

Prof. Willem Steyn

Partner Responsibilities

	Short name	Country	Business activity	Roles in the project	
1	SSC	United Kingdom	University (Research)	Project management, Payloads: CubeSats, Dragsail, Harpoon structure	
2	SSTL	United Kingdom	Space Prime for small Platform provider, Satellite operations		
3	Airbus D&S	Germany		Payloads: Net	
4	Airbus D&S	France	Space Prime for space transportation and satellites	Mission & System Engineering, Payloads: Vision-based navigation	
5	Airbus D&S	United Kingdom		Payloads: Harpoon	
6	ISIS	Netherlands	SME, specializing in nanosatellites	Payloads: CubeSat deployers	
7	CSEM	Switzerland	Research Institution	Payloads: LiDAR camera	
8	INRIA	France	Research Institution	Payloads: VBN algorithms	
9	STE	South Africa	University (Research)	Payloads: CubeSat avionics	

Experimentation Sequence

Payloads Demonstrations (1/4)

Net demonstration

Deployment in Bremen Drop Tower

Deployment in Novespace A300 Parabolic Flight

Payloads Demonstrations (1/4)

Payloads Demonstrations (2/4)

VBN demonstration

Vision-Based Navigation System

Payloads Demonstrations (3/4)

Harpoon demonstration

Harpoon System

Harpoon Target Assembly Payload

Projectile Prototypes and Evolution

Payloads Demonstrations (4/4)

Drag sail demonstration

- 4
- Dragsail deorbiting experiment
- Inflatable mast
- Deployment of a mast with a drag sail of ~9m2
- No need to control platform during demonstration (CoG front to aero pressure centre)
- Based on InflateSail mission (but payload version)

Packaged Inflatable; Combined Inflatable and Deployable Boom Mechanism

Payloads Demonstrations (4/4)

Platform - I

Platform - II

CubeSats - I

Targets – 2 x 2U Cubesats, mainly based on COTS, Mass ~ 2kg each

 DSAT-1: Semi active – Net Experiment (OBC + Power + Inflatable Structure)

Internal CGG and Valve

CubeSats - II

Targets – 2 x 2U Cubesats, mainly based on COTS, Mass ~ 2kg each

 DSAT-2: Fully active – VBN Experiment (OBC + Power + AOCS + ISL)

Avionics Core

Vibe Testing

Mission Analysis – I

Decay Duration

- Both ESA's DRAMA (debris risk assessment and mitigation analysis) and CNES's STELA (semi-analytic tool for end of life analysis) used.
- Specification: Orbit decay < 25 year
 - Sensitive to solar activity, altitude, BN (ballistic number)
 - Decay driven by Platform BN ~140kg/m2 (worst case compared to CubeSat, Net, Harpoon)
- No issue with regard to decay duration
 - Decay < 5 years (without drag sail)
- Deployment above 370km recommended

Orbit lifetime duration (years)		Initial date				
		2016/01	2016/06	2017/01	2017/06	
	330	0.33	0.40	0.42	0.49	
Initial	370	0.87	0.99	1.2	1.4	
altitude (km)	400	1.9	2.2	2.7	3.0	
()	435	4.8	4.7	4.3	4.1	

Drag Effects

- VBN demo sensitive to target trajectory dispersions
 - Platform pointing to target in open loop
- Drag major contributor to trajectories dispersions at ISS altitude
 - Other key drivers: Platform absolute pointing and Deployer accuracy (velocity & direction)
- Net & Harpoon demo not sensitive to drag effects

Mission Analysis – II

Lighting Conditions

- Key parameter for supervision cameras for successful assessment in demonstrations
- Lighting parameters
 - Consideration given to local direction of the sun and local direction of the target as seen by the cameras.
- Opportunities with correct lighting conditions not all time!

Further Information

Joffre, E., Forshaw, J. L., Secretin, T., Reynaud, S., Salmon, T., Aurelien, P., Aglietti, G. (2015), "RemoveDebris – Mission Analysis for a Low Cost Active Debris Removal Demonstration in 2016", 25th International Symposium on Space Flight Dynamics (ISSFD), Munich, Germany.

Nanoracks Launch

- Launch under procurement, likely candidate is early 2017 launch from ISS
- ~400 km orbit, 51.6 degrees inclination

Launch Process

- 1. Launch by ISS visiting vehicle
- Platform transported in bag or box
- Platform unpacked by ISS crew and installed intoJapanese module
- Air lock and slide table allow grapling of payload with robotic arm
- Robotic arm positions and releases platform

Conclusions – I

Progress

Final mission design and preparation for flight models for late 2016.
 Launch planned for early 2017 (depending on flight roster).

Mission Novelty

- Low cost ADR mission to demonstrate, de-risk and mature key ADR in-orbit technologies.
- Valuable to the community:
 - Opportunities and funding to perform IOD debris removal missions are scarce.
 - An opportunity to mature net, harpoon, VBN technologies, which can be scaled up to use on future missions which target heavy debris.
- Likely to be the world's first active debris demonstration mission using "artificial targets".

Conclusions – II

RemoveDebris

Conclusions – III

Publications

- Massimiani, C., Forshaw, J. L., Richter, M., Viquerat, A., Simons, E., Duke, R. and Aglietti, G. (2015),
 "Review of Surrey Space Centre Debris Removal Research Missions", 3rd IAA Conference on University
 Satellite Missions & CubeSat Workshop, Rome, Italy.
- Forshaw, J. L., Aglietti, G., Navarathinam, N., Kadhem, H., Salmon, T., Joffre, E., Chabot, T., Retat, I., Axthelm, R., Barraclough, S., Ratcliffe, A., Bernal, C., Chaumette, F., Pollini, A. and Steyn, W. H. (2015), "An In-Orbit Active Debris Removal Mission RemoveDEBRIS: Pre-launch Update", 66th International Astronautical Congress, Jerusalem, Israel.
- Forshaw, J. L., Massimiani, C., Richter, M., Viquerat, A., Simons, E., Duke, R. and Aglietti, G. (2015),
 "Surrey Space Centre: A Survey of Debris Removal Research Activities", 66th International Astronautical Congress, Jerusalem, Israel.
- Chabot, T., Kervendal, E., Despré, N., Kanani, K., Vidal, P., Monchieri E., Rebuffat D., Santandrea, S., Forshaw, J. (2015), "Relative Navigation Challenges and Solutions for Autonomous Orbital Rendezvous", EuroGNC 2015, Toulouse, France.
- Forshaw, J. L., Lappas, V. J., Pisseloup, A., Salmon, T., Chabot, T., Retat, I., Barraclough, S., Bradford, A., Rotteveel, J., Chaumette, F., Pollini, A. and Steyn, W. H. (2014), "RemoveDEBRIS: A Low Cost R&D ADR Demonstration Mission", CNES 3rd European Workshop on Space Debris Modeling and Remediation, Paris, France
- Forshaw, J. L., Aglietti, G. (2014), "The EU Project RemoveDEBRIS", 5th AIRBUS DS Space Systems Research and Technology Days, Berlin, Germany.

