HYBRID PROPULSION SOLUTIONS FOR SPACE DEBRIS REMEDIATION APPLICATIONS

Clean Space Industrial Days ESA-ESTEC, 23-27 May 2016

Martina G. Faenza ⁽¹⁾, Onno Verberne ⁽¹⁾ Stefania Tonetti ⁽²⁾, Stefania Cornara ⁽²⁾ Tobias Langener ⁽³⁾

(1) Nammo Raufoss AS, P.O. Box 162, 2831 Raufoss, Norway, Email: martina.faenza@nammo.com
 (2) Elecnor Deimos, Ronda de Poniente 19, 28760 Tres Cantos, Madrid, Spain, Email: stefania.tonetti@deimos-space.com
 (3) ESA ESTEC, P.O. Box 299, 2200 AG Noordwijk ZH, The Netherlands, Email: Tobias.Langener@esa.int

Clean Space Industrial Days, 23-27 May 2016, ESA-ESTEC

Motivation

_

TURE

Framework

- 1 year study carried out by Nammo Raufoss and Elecnor Deimos.
- Funded under the ESA General Studies Programme (GSP).
- Project end: beginning of July 2016.
- Main objective of the study: investigating the implementation of a propulsion system based on <u>hybrid rocket technology for active debris remediation</u> (ADR) missions, and preliminary assessing its design, performance metrics and required delta-development (TRL).
- Interest in considering alternative solutions to conventional bi-propellant systems that could address the need for the recurrent use of a ADR dedicated system.
- Hybrid propulsion systems are based on non-toxic and particles-free propellants and have already proved to be competitive and reliable in the thrust range compatible with space debris remediation missions.

Hybrid Propulsion

Study Content

- Competences in mission analysis (Deimos) and hybrid propulsion (Nammo) have been combined to perform the study.
- Mission analysis:
 - Detailed survey of ESA and European LEO missions
 - Orbital maneuvers sizing:
 - Transfer to target orbit
 - Approach to target
 - De-orbit and re-entry
- Propulsion system assessment:
 - Implementation of models:
 - Simplified mass budget estimation \rightarrow Tsiolkovsky
 - Detailed modeling
 - Sizing of selected scenarios
 - Comparison with bipropellant system
 - Assessment of TRL and missing development required to flight qualification

General Requirements

- <u>Functions</u>: a dedicated satellite, the chaser, is sent to target, capture and deorbit a single object in space. So the chaser is fully independent once released by the launcher in its injection orbit.
- <u>Launcher</u>: Vega.
- <u>Maximum acceleration</u>: a strict requirement is enforced.
 In compliance with ESA approach, this study considers a value of 0.04g.
- <u>Propulsion system</u>:

Function #	ID name	Description
F1	Targeting	Hybrid 87.5% H2O2-HTPB/HDPE
F2	RDV	Monopropellant 87.5% H2O2
F3	Deorbiting	Hybrid 87.5% H2O2- HTPB/HDPE
F4	RCS	Monopropellant 87.5% H2O2

• <u>Margins</u> are applied both to ΔVs and dry masses in proportion to the level of uncertainty.

Mission Scenarios: Debris Population

- Focus on ESA, ESA member states and ESA cooperating states LEO missions, considering in-orbit, under current design and future missions.
- 80% of the missions are in SSO, polar orbits or near to them.
- Focused scenarios: SSO between 350 km and 850 km with satellite masses from 10 kg to 8000 kg. → 130 missions identified to be potential object of study for ADR analyses.
- Information retrieved: mission name, launch date, agency or organization, spacecraft mass and average cross section, orbit type, orbit reference altitude and inclination and propulsion system embarked.

Mission Scenarios: Maneuvers

- Three different propulsive phases have been considered and sized:
 - Transfer to target orbit, Vega as baseline launcher
 - The highest mass at the target orbit is achieved when the injection altitude is the lowest possible: 300 km
 - Orbital raising to target orbit is performed by the chaser itself.
 - Approach to target:
 - Far range rendezvous;
 - Close range rendezvous.
 - De-orbit and controlled re-entry over SPOA (60 km altitude):
 - For the thrust-to-mass ratios considered in the study, gravity losses are negligible (<1%) and thus the number of maneuvers does not affect significantly the total delta-V expenditure for the disposal phase.

© Nammo Raufoss AS, 2016

Propulsion System Architecture

- The main propulsion system is composed by 1 hybrid motor responsible for targeting and deorbiting maneuvers.
- Rendezvous and attitude control are performed by a RCS system composed by 12 monopropellant thrusters (+12 redundant).

Nammo

Hybrid moto

TRL 6

Considered Scenarios

#	Debris mass [kg] – altitude [km]	 ΔVs [m/s] (with margins) Targeting RDV and RCS Deorbiting 	Max acc [g]	Thrust class [N] – tot burning time [min]
1	1366 - 400	 61 36 103 	0.04	600 – 4.5
2	2157 - 693	 228 36 184 	0.04	1000 – 9
2 b			0.08	2000 – 4.5
3	400 - 506	 122 36 132 	0.04	200 – 7
4	1300 - 593	 171 36 156 	0.04	600 – 7.5

Example of Output: Scenario 1

lt

	Targeting phase	Rendezvous phase	Deorbiting phase
Consumed propellant [kg]	4	5	53
Burning time [s]	21	30	269
Peak thrust [N]	614	20	614
Peak acceleration [m/s ²]	3.03	1.19	0.39
Initial system mass [kg]	206	202	1563

PROPULSION SYSTEM SIZE (margins included):

- Propulsion system wet 81.9 kg mass:
- Propulsion system dry 20.1 kg mass:
- Hybrid motor total envelope w nozzle (AR 100), DxL: 0.256x0.943 m
- Hybrid motor total envelope w/o nozzle, DxL: 0.134x0.724 m
- Oxidizer tank capacity: 42
- Oxidizer tank outer diameter 0.302 m (x3):
- Pressurizing gas tank 4 It capacity:
- Pressur. gas tank outer 0.195 m diameter:

z

- Oxidizer tank outer diameter (spherical x3): 0.437 m
- Pressurizing gas tank capacity: 11 lt
- Pressurizing gas tank outer diameter (spherical): 0.282 m
 - © Nammo Raufoss AS, 2016

Pressurizing gas tank capacity:

Pressurizing gas tank outer diameter (spherical): 0.281 m

11 lt

Nam

Study Further Tasks

- Further steps in the study, not yet concluded but already ongoing:
 - <u>sizing for ENVISAT;</u>
 - <u>assessing the TRL</u> of the main components and technologies included in the considered hybrid propulsion system and <u>identifying the delta-development</u> effort required to bring them to a ready to flight status;
 - <u>comparing</u> the appraised scenarios based on hybrid propulsion <u>with the</u> <u>corresponding conventional bi-propellant system</u> in order to highlight the benefits of choosing a hybrid system;
 - <u>out looking</u> at the suitability of the considered hybrid propulsion system for <u>upcoming ESA missions</u> as a propulsion kit addressing <u>debris mitigation</u> requirements.

The authors would like to thank the ESA General Studies Programme (GSP) office and the Clean Space Initiative

Thank you. Questions?

martina.faenza@nammo.com

