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Tests of robotic systems
for planned ADR missions 

• Complicated robotic systems 
required for planned ADR 
missions must be tested in the 
laboratory conditions. 
• Microgravity is the aspect of 
space environment that is 
especially hard to be recreated 
on Earth. 
• Microgravity test-bed is 
required for tests of hardware 
(e.g., manipulators), tests of 
control algorithms and for 
validation of dynamical models 
and numerical simulations. 

Orbital capture manoeuvre with a 
manipulator (artist concept) and laboratory 

at CBK PAN.



Simulations of microgravity 
conditions  

• How we can simulate microgravity conditions on Earth?
• Various possibilities:
‒ weight-reducing suspension systems,
‒ systems based on industrial robots (e.g., EPOS),
‒ underwater tests with neutral buoyancy vehicles,
‒ parabolic flights,
‒ air-bearing test-beds.

Weight-reducing suspension system at CBK PAN.Air-bearing test-bed at CBK PAN.



Planar air-bearing 
microgravity simulator 1/2

• Tested objects (e.g., satellite mock-up, manipulator) are 
mounted on planar air-bearings. 
• Air-bearings provide an exceedingly low friction (friction 
coefficient around 10-5) and allow almost frictionless 
motion on the table surface.

Satellite mock-up.

Planar air-bearing.

Schematic view of an air-bearing.



Planar air-bearing 
microgravity simulators 2/2

• Small disturbances: Residual 
gravity acceleration is around 
10-3 ÷ 10-5 g.
• Relatively long time of 
experiment: at least several 
minutes.
• Low costs of operations.
• Many possible applications 
(not only in the field of space 
robotics).

• Motion limited to one 
plane only (simulation of 
microgravity conditions in 
two dimensions).
• Limited size of the 
experimental area.
• Tested systems must 
usually be scaled down.
• Precise calibration 
required for free-floating 
experiments.

DisadvantagesAdvantages



Objects must be scaled down due to limited area of the granite 
table and due to limits on maximal loads of air-bearings: 

𝑃𝑃𝑠𝑠 = 𝑘𝑘𝑏𝑏 � 𝑃𝑃

where: P is value of a given parameter before scaling, Ps is the scaled 
value, k is the selected scaling factor, while b is the scaling exponent.

Scaling

Physical 
quantity

Scaling 
exponent

1 Length 1
2 Mass 3
3 Inertia 5
4 Velocity 0
5 Acceleration -1

Scaling exponents for selected physical quantities.



Air-bearing microgravity 
simulator at CBK PAN

• Test facility in use since 2012 
(first presented at ASTRA 2013 
conference). 
• Major upgrade performed at 
the end of 2015. 
• Used in various experiments 
connected with on-orbit 
robotics (but not only!).
• Test-bed based on 2m x 3m
granite table (with celling 4m
above the surface).

Granite table at CBK PAN.



Experiments related 
to ADR missions

Planar air-bearing 
microgravity 

simulator at CBK PAN 

Trajectory planning for 
2 DOF free-floating 

manipulator

Hardware-in-the-loop 
simulation of the 

capture manoeuvre

Contact dynamics 
during capture 

manoeuvre

Proximity operations 
with thrusters                

(cold gas/resistojet)

Dynamics of the 
flexible free-floating 

manipulator

Already done!



Satellite-manipulator mock-up.

Satell ite-manipulator 
mock-up 1/2



Schematic view of the planar satellite-
manipulator system.

Parameter Value
1 Satellite mass 12.9 kg
2 Satellite moment

of inertia 0.208 kg·m2

3 Link 1 mass 4.5 kg
4 Link 1 moment of

inertia 0.32 kg·m2

5 Link 1 length 0.619 m
6 Link 2 mass 1.5 kg
7 Link 2 moment of

inertia 0.049 kg·m2

8 Link 2 length 0.6 m

Geometrical and mass properties of the 
planar satellite-manipulator system.

Satell ite-manipulator 
mock-up 2/2



Free-floating 
manipulator.

Fixed-base 
manipulator.

Fixed-base, free-floating 
and free-flying manipulators

Free-flying 
manipulator.



𝐆𝐆 𝐪𝐪𝑝𝑝 ≈ 0𝐆𝐆 𝐪𝐪𝑝𝑝 ≠ 0

𝐪𝐪𝑝𝑝 = 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛 𝑇𝑇 𝐪𝐪𝑝𝑝 = 𝐫𝐫𝑠𝑠 𝚯𝚯𝑠𝑠 𝜃𝜃1 𝜃𝜃2 … 𝜃𝜃𝑛𝑛 𝑇𝑇

Satell ite-manipulator
dynamics

Equation of satellite-manipulator dynamics:

Mass 
matrix

Coriolis 
matrix

Potential 
forces

Torques

𝐌𝐌 𝐪𝐪𝑝𝑝 �̈�𝐪𝒑𝒑 + 𝐂𝐂 𝐪𝐪𝑝𝑝, �̇�𝐪𝑝𝑝 �̇�𝐪𝑝𝑝 + 𝐆𝐆 𝐪𝐪𝑝𝑝 = 𝐐𝐐

Space manipulators
(free-floating and free-flying)

Ordinary manipulators 
(fixed-base, working on Earth)



Trajectory of the manipulator end-effector is defined in the velocity 
space. 

�̇�𝛉 = 𝐉𝐉𝑀𝑀 − 𝐉𝐉𝑆𝑆𝐇𝐇2
−1𝐇𝐇3

−1 𝐯𝐯𝑒𝑒𝑒𝑒
𝛚𝛚𝑒𝑒𝑒𝑒

− 𝐉𝐉𝑆𝑆𝐇𝐇2
−1 𝐟𝐟𝑚𝑚

𝐟𝐟𝑎𝑎𝑚𝑚

𝐯𝐯𝑠𝑠
𝛚𝛚𝑠𝑠

= 𝐇𝐇2
−1 𝐟𝐟𝑚𝑚

𝐟𝐟𝑎𝑎𝑚𝑚
− 𝐇𝐇3�̇�𝛉

Matrices H2 i H3 are influenced not only by the state of the 
manipulator, but also by the state of the servicing satellite.

𝐉𝐉𝑠𝑠 = 𝐈𝐈 �𝐫𝐫𝑒𝑒𝑒𝑒_𝑠𝑠
𝑇𝑇

0 𝐈𝐈 𝐉𝐉𝑀𝑀 = 𝐤𝐤1 × 𝐫𝐫𝑒𝑒𝑒𝑒 − r1 … 𝐤𝐤𝑛𝑛 × 𝐫𝐫𝑒𝑒𝑒𝑒 − 𝒓𝒓𝑛𝑛
𝐤𝐤1 … 𝐤𝐤𝑛𝑛

𝐐𝐐 = 𝐌𝐌 𝐪𝐪𝑝𝑝 �̈�𝐪𝑝𝑝 + 𝐂𝐂 𝐪𝐪𝑝𝑝, �̇�𝐪𝑝𝑝 �̇�𝐪𝑝𝑝

Joint control torques Q are computed for manipulator trajectory  
obtained in the joint space:

Inverse dynamics                                   
problem

𝐐𝐐 = 𝐅𝐅𝑠𝑠 𝐇𝐇𝑠𝑠 𝐮𝐮 𝑇𝑇

𝐟𝐟𝑚𝑚
𝐟𝐟𝑎𝑎𝑚𝑚

=

�𝐅𝐅𝑠𝑠𝑑𝑑𝑑𝑑

�𝐇𝐇𝑠𝑠 + �𝐫𝐫𝑠𝑠𝐅𝐅𝑠𝑠𝑑𝑑𝑑𝑑



Air-bearing microgravity
simulator in the SRC PAS



Reference positions of manipulator joints 
calculated for the end-effector reference 

trajectory.

Air-bearing table: 
straight l ine trajectory 1/2
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Error of manipulator joints positions 
(difference between the reference trajectory 

and data obtained from encoders).



Comparison between the reference end-effector 
trajectory and end-effector position measured 

during the experiment.

Comparison between the satellite orientation 
obtained from numerical simulations and 
orientation of manipulator base measured 

during the experiment.

Air-bearing table: 
straight l ine trajectory 2/2
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Experimental results
Reference trajectory
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Numerical simulations



Air-bearing table results 1/5



Reference positions of manipulator joints 
calculated for the end-effector reference 

trajectory.

Air-bearing table: 
capture trajectory 1/2
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Comparison between the reference end-effector 
trajectory and end-effector position measured 

during the experiment.

End-effector position error (difference 
between the reference trajectory and 

position measured during the experiment).

Air-bearing table: 
capture trajectory 2/2
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Experimental results
Reference trajectory

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (s)

E
nd

-e
ffe

ct
or

 p
os

iti
on

 e
rro

r (
m

)



Experiments in the frame of 
e.deorbit project 1/5

• Simulation of the capture manoeuvre with 
scaled down mock-up of chaser, gripper, 
manipulator, target and LAR.
• During experiment the robotic arm will 
move the gripper mock-up towards the LAR 
mock-up (mounted on the target platform) 
and gripper jaws will close on LAR. 
• Experiment limited to one plane 
(misalignments between the gripper and 
LAR in the plane parallel to the table 
surface).

Simplified Envisat model.



Experiments in the frame of 
e.deorbit project 2/5

• Main objectives: 
1. To experimentally investigate contact forces and torques 

between the gripper and the LAR.
2. To experimentally investigate dynamic impact of contact 

phenomena on chaser during the capture manoeuvre.

Mock-up of the chaser satellite with 
2 DOF manipulator.

3. To assess the possibility of 
using planar air-bearing 
microgravity simulator to 
obtain valuable data during 
development of ADR 
missions.



Experiments in the frame of 
e.deorbit project 3/5

Parameter Scaling 
exponent b

Value before 
scaling

Value after 
scaling

1 Target mass [kg] 3 7900 213.3
2 Chaser mass [kg] 3 1500 40.5
3 Robotic arm length [m] 1 4.2 1.26
4 Gripper stroke [cm] 1 7 2.1

5 Time of grasping [s] 1 5 1.5

6 Chaser inertia [kg*m2] 5 762 1.85

Proposed scaling of system for tests on the air-bearing microgravity simulator 
in the frame of e.deorbit Mission Phase B1 study (scaling factor k = 0.3).



Experiments in the frame of 
e.deorbit project 4/5

Experimental test set-up on the planar air-bearing microgravity 
simulator with chaser and target mock-ups.



Experiments in the frame of 
e.deorbit project 5/5

Scheme of the gripper for contact analysis.

FEM Ansys simulations.

Matlab „Simulation tool for space robotics” 
with added contact module.



New platform for target 
mock-up

CAD drawing of a new air-bearing 
target platform (ready for tests).

• On this platform LAR mock-up 
will be mounted.
• New air-bearing allow higher 
load capacity (mock-up mass 
above 200 kg!).
• Platform finished in May 2016, 
first tests are now underway.
• Possibility to add 3 additional 
rotational DOF with spherical air-
bearing.



New platform for chaser 
mock-up

CAD drawing of a new air-bearing chaser 
platform (currently being integrated).

Top view of a new platform                         
(arrows indicate positions of 8 thrusters).



Other applications 
of air-bearing test-bed

Experiments connected with Mars Moon Sample 
Return Mission (SAMPLER, REST).



Summary

• Planar air-bearing microgravity simulator is one of possible 
solutions to simulate microgravity conditions on Earth.
• Test-bed at CBK PAN was successfully used for numerous 
experiments related to space robotics.
• Experiments performed up to now involved planar satellite mock-
up with 2 DOF manipulator. 
• Planar air-bearing microgravity simulator can be used for various 
experiments related to ADR missions.
• Test campaign is currently planned in the frame of e.deorbit
Mission Phase B1 study (contact forces and torques between the 
gripper and the LAR will be investigated).
• Recent upgrades to the test-facility: new air-bearing platforms 
(one with thrusters) and new pose estimation system.



Thank you 
for your attention!
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