

cosine

Marco Esposito Remote Sensing Unit Manager cosine Measurement Systems m.esposito@cosine.nl

Clean Space Industrial Days e.Deorbit session ESA ESTEC 27 May 2016

outline

- Company introduction
- Multispectral Sensing for Relative Navigation project
 - Current status
- Conclusions

cosine measurement systems

- Measurement systems
 - Remote sensing techniques
 - Space, aerospace, field and factory
 - Spectral imaging
 - White light, laser or environmental light
 - Multi-camera
 - Thermal infrared to gamma rays
- Applications
 - Astronomy, Earth observation
 - Airborne remote sensing
 - Agriculture, food & feed
 - Safety, security, surveillance, forensic
 - Oil, gas & energy
 - Machine vision
- Core team of 30 physicists and engineers
 - Analysis, lab study, design, procurement
 - Assembly, integration, verification, qualification
 - Calibration, data processing s/w

- Based in Leiden, The Netherlands
 - Italian subsidiary
- Development and test facilities
 - clean room, laser, radiation and electronics laboratories
 - calibration and thermal vac testing
 - extensive collaborations with external facilities
- Cluster of high-tech partners and suppliers
 - Institutes and universities
 - Small and large companies
 - Around the world
- Management
 - Prof. Dr Marco Beijersbergen
 - Dipl.-Ing. Max Collon

Contribution to Large satellite missions

- XMM newton computer models, level 0-1b processor
- TROPOMI Requirement definition, Performance analysis. Level 0-1B processor, stray-light analysis.
- SPEX spectropolarimeter for EO

 mission simulation,
 performance analysis, optical
 design, calibration
- Technology development for future lidar missions
- High-res Thermal Infrared for next generation EO missions.
- Athena Silicon Pore Optics technology development

International Space Station payloads

- ERB1: Stereoscopic camera launched on the ISS in July 2006.
- ERB2: Full HD stereoscopic camera launched on the ISS on the 3rd of February 2010.
- ERB2 User Home Base: Commanding, ERB-2 live 3D streaming from the ISS to ESTEC.
- NightPod: Nodding mechanism for nocturnal imaging of Earth from the ISS. Launched on the 21st of December 2011.

Interplanetary exploration designs and missions

MASCOT STM-1, image copyright DLR

- Mercury and Jupiter suites (ESA Reference mission studies)
- SINPLEX compact multipurpose GNC system for planetary landing
- SPEX spectropolarimeter for space exploration
- Optical-GNC system for the MASCOT lander onboard the JAXA Hayabusa-2 (FM under production)

Smart Payloads for Multiscale Earth Inspection

- We are developing miniaturized remote sensing suites of commercial instruments for Earth inspection:
 - Frequent, medium resolution, global data from a fleet of microsats and nanosats
 - Complemented with on-demand high-resolution local data from UAVs
 - Complemented with on-demand local data from on-vehicle systems
 - Based on a common remote sensing technology
- Based on 5 technology lines
 - Hyperspectral, IR sensing, single photon lidars, polarimetry, spectroscopy
- Flight hardware for maiden space flight to be delivered Q4/2016

Introduction Multispectral for relative navigation

- Multi-spectral imaging can lead to significant improvements of space navigation systems.
 - ESA TRP project ongoing for the assessment in a bottom-up approach of the potential use of the combination of visible and infrared wavelengths for navigation.
 - Final goal is to provide an architecture and a preliminary design of a Multispectral Sensing Device (MSD).
- A more robust system can be obtained combining a VNIR spectral channel to a TIR spectral channel.
 - Navigation can be performed also if the Sun is in eclipse by detecting the thermal radiation.
 - Specific wavelengths dependent features can be identified by a finer sampling of the VNIR spectrum.
- Possible applications are:
 - Relative navigation between two cooperating space vehicles (Rendezvous)
 - Non-cooperative rendezvous (debris detection and removal)
 - Descent and landing on an asteroid

Project Consortium

cosine

- Prime contractor
 - Multispectral Sensing Device (MSD) hardware design and modeling

- Subcontractor
 - Data generation, fusion, processing, navigation filters and MIL simulations.

Study logic

Algorithms subsystems and test environment

- Data fusion
 - At image level
 - At navigation level
- Different image fusion methods
- Navigation filter

Mission scenario

Scenario	Test description	
RDV Envisat	Different phases: • From 900 m to 800 m • From 500 m to 400 m • From 300 m to 200 m • From 100 m to 75 m • Hold orbit at ~50 m • Few meters from the target	
RDV ISS	Hold point at ~280 m	
D&L	From 2 Km to landing	

Spectral bands

- Simplified material model of the target
- Materials present different spectral features

Considered bands and Instrument requirements

- Several band options considered for the VNIR channel:
 - Single VNIR band: 0.4 1 μm
 - VIS + NIR bands: $0.4 0.7 \mu m + 0.7 1.0 \mu m$
 - 2 VIS + NIR bands: $0.4 0.5 \mu m + 0.5 0.6 \mu m + 0.6 1.0 \mu m$
- For the Thermal InfraRed channel
 - Single TIR band: 8 14 μm
- The rendezvous scenario has been considered to derive the requirements for the conceptual design.

Parameter	VNIR	TIR
iFoV [mrad]	0.7	1
FoV [deg]	40	30
SNR	>4	>4

Spectral Imaging methods

- Image two spatial and one spectral dimension with a 2D focal plane array
 - Point-scanning spectrometer (whiskbroom sensor)
 - Line-scanning spectrometer (pushbroom sensor)
 - Wavelength-scanning spectrometer (staring sensor)
 - Snapshot imaging spectrometer

Telescope concept: fully refractive

Visible Near InfraRed channel

- 0.4-1 μm spectral range
- F/# = 5
- f=15 mm
- 2048 x 2048 pixel CMOS array
- 40° x 40° field of view
- Image space telecentricity
- Volume 20x20x130 mm³

Thermal InfraRed channel

- 8-14 mm spectral range
- F/# = 1.5
- f=25 mm
- 1024 x 768 pixel
- 40° x 30° field of view
- Volume 50x50x60 mm3

Telescope concept: fully reflective

- Modified reflective telescope from existing nanosat based hardware for Earth Observation
 - 0.4 1 μm and 8-14 μm spectral ranges
 - F/# = 4
 - 4096 x 2000 pixels (VNIR)
 - 1024 x 768 pixels (TIR)
 - 30.5° x 16° field of view (VNIR)
 - 23.8° x 16° field of view (TIR)
 - Volume $\sim 1 \text{ dm}^3 (1 \text{U})$

Summary configurations

- Optical train is shared by the two spectral channels
 - Perfect coregistration
 - Very compact instrument
 - Good radiometric performance in both channels
 - Non optimized resolution for the TIR channel

- Dedicated lens system for each of the two spectral channels
 - Optimized resolution and radiometric response for each channel
 - Poorer coregistration
 - Larger volume occupation

Preliminary radiometric performance

Conclusions

- Project running and expected to finish end of summer 2016
- Mission scenario, data generation, requirements, simulation environment have been set
 - Rendezvous driving the requirements
- MSD possible architecture identified, preliminary design and MIL simulation ongoing in an iterative way

cosine

cosine

J.H. Oosteinde 36 2361 HE Warmond The Netherlands Tel. +31 71 528 49 62 info@cosine.nl

Technical requirements

Table 1: Requested bands

Band	Acro- nym	Range (approx)	Comments
Near ultra- violet	NUV	300÷380 nm	Assumed to be either - Sun light reflected by the target surface - Light emitted by a cooperating target
Visible light	VIS	380÷750 nm	
Near infra- red	NIR	0.75÷1.4 μm	
Thermal infrared	TIR	8÷15 µm	Assimilated to long wave infrared (LWIR) band

Table 2: Requested missions and phases

Mission	Phase	Comments			
Rendezvous with cooperating target in LEO	- Rendezvous with and capture by the ISS	The ISS cooperates with - inter-satellite communications (knowledge of target orbit and attitude) - target pattern (LEDs) for RV sensor			
Rendezvous with cooperating target in Earth- Moon L2	- Rendezvous with a station at Earth-Moon L2	- Similar to the RV with ISS			
Rendezvous with non-cooperating target	- Chaser rendezvous with a large debris - Forced translation of the chaser - Debris capture by the chaser	ADR mission for removal of a large debris The target rotational state may include nutation or tumbling			
Descent and landing on an asteroid	- Far station keeping 35 km apart - Descent to low altitude - Delivery of science payload MASCOT - Ascent to safe distance	Within the AIM mission to binary asteroid 65803 <u>Didymos</u>			
Navigation for planetary flyby	- Jupiter orbit insertion (JOI) - Swing by Galilean satellites	Optical navigation within the JUICE mission			
NOTE: For this study p	NOTE: For this study purpose: rendezvous phases start once the multispectral sensor has ac-				

NOTE: For this study purpose: rendezvous phases start once the multispectral sensor has acquired the target; target acquisition is considered

Existing integrated cosine's suites of instruments

- Heritage from cosine's suites
 - Broadband infrared suite
 - Stereo imaging and hyperspectral (SILAT)
 - HyperScout hyperspectral with onboard analytics
- Sensor types
 - NUV/VIS: CCD, CMOS
 - NIR/SWIR: InGaAs, MCT
 - TIR: MCT, microbolometers
- Cooling
 - Passive
 - Active

