Clean Space Industrial Days ESA/ESTEC, 23-27 May 2016

Optimal Guidance, Navigation & Control (GNC) for Drag-augmented Deorbiting - Results from the ESA DGNC Project -

Outline

- Introduction to the DGNC project for ESA
- Description of the DGNC Simulation Tools: S-MIL and C-MIL
- Validation of the S-MIL
- DGNC project results achieved so far
- Next project's activities until Final Presentation

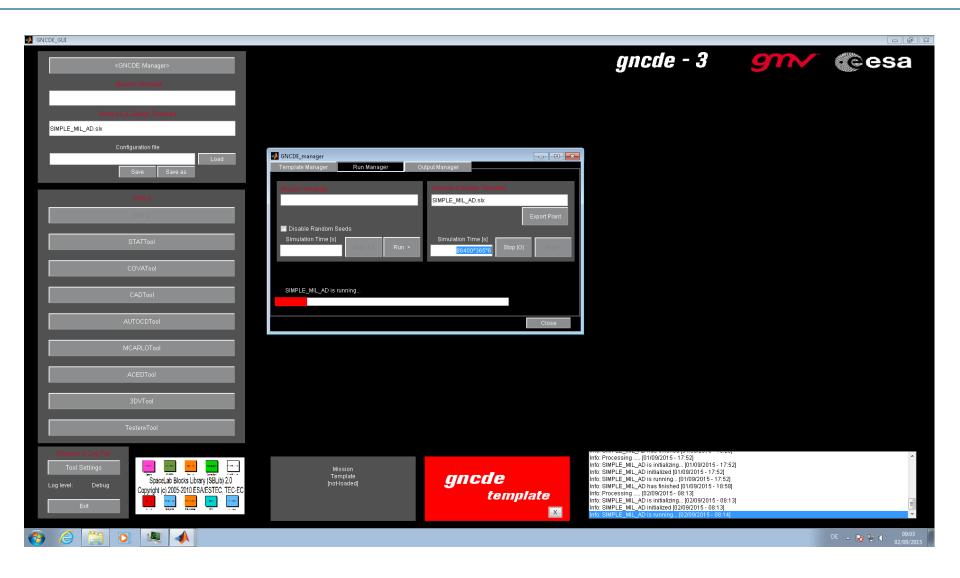
Introduction

- Since some years now, worldwide concern is raising about Sustainable Development of Space, hence about debris limitation in/removal from LEO Protected Region
- Several methods exist to remove debris from the LEO Protected Region:
 - Limit altitude (e.g. to max 550-650 for most typical Area-to-Mass Ratio AMR)
 - Use drag-augmentation devices (i.e. dragsails/solarsails) or tethers
 - If available, use (remainings of) propulsion for (indirect or) direct re-entry
- For the methods using dragsails/solarsails (DRS/SRS), the question posed to DGNC is:

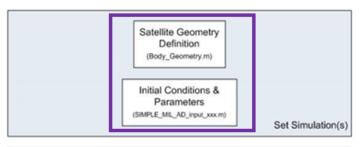
During deorbit, is it better to continuously optimise the Sat+DRS/SRS attitude wrt aerobraking fluxes (with active attitude control) OR is it better to leave the Sat+DRS/SRS uncontrolled (i.e. tumbling)?

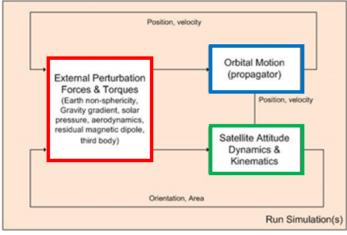
- To answer this question, the DGNC project had (so far) to:
 - Develop specific simulation tools (i.e. the S-MIL and now the C-MIL)
 - Perform trade-offs relating to ADCS/GNC aspects of Sat+DRS/SRS configurations

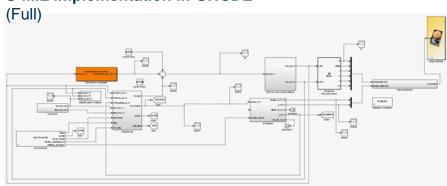
Clean Space Industrial Days ESA/ESTEC, 23-27 May 2016

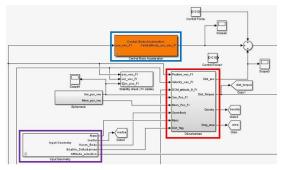


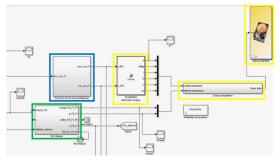
Description of the DGNC Simulation Tools: S-MIL and C-MIL


S-MIL Design (1)

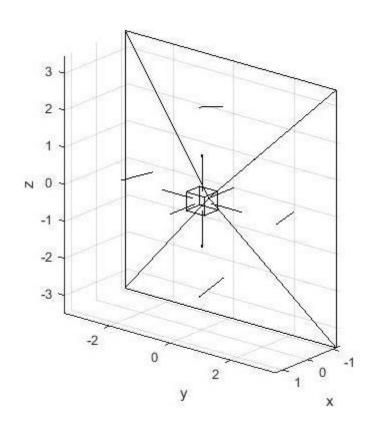



S-MIL Block Diagram




S-MIL implementation in **GNCDE**

S-MIL implementation in GNCDE (Zoom 1)


S-MIL implementation in GNCDE (Zoom 2)

Inputs to simulation (init_file)

- Simulation step size [s],
- Flag for Drag/Solar surface computation [0=constant, 1=geometry based],
- Value of the constant exposed Drag/Solar area
- Value of drag coefficient for the constant exposed Drag/Solar area
- Centre of pressure position for the constant exposed Drag/Solar area
- Magnetic Residual Dipole Magnitude and Direction
- Number of zonal and tesseral terms for the non-sphericity
- Satellite mass and inertia
- Satellite Main Body Geometry (to be imported from Body_Geometry.m output)
- Disturbances flags (1=enable)
- Attitude selection (0=Tumbling, 1=Fixed orientation)
- Initial Simulation Date
- Initial Orbital Parameters [rp ra i RAAN omega nu]
- Initial tilting angles of the satellite, order roll, pitch, yaw [deg]
- Initial angular velocities of the satellite [deg/s]

Outputs

FIRST OUTPUT FILE (10F) AS GENERATED BY THE GNC MIL

For each processing step, a column is created in the first output file with the following information:

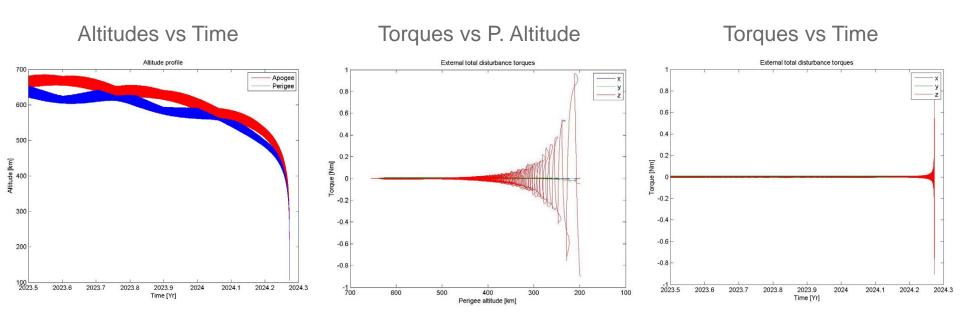
- 1. Simulation Time in seconds
- 2. Simulation Date in MJD format
- 3. Reliability
- 4. Six orbital parameters locating the satellite
- 5. quaternions defining the satellite attitude wrt ECI reference frame
- 6. Angular velocities of the satellite
- 7. Aerodynamic force vector
- 8. Solar radiation pressure force vector
- 9. External torques (total) acting on the satellite
- 10. Estimated Cross Area (with respect to velocity vector)
- 11. Stability associated index (1=yes/0=no)

SECOND OUTPUT FILE (20F) AS POST-PROCESSED

Identified events:

- (T) Start (T0) and Stop (Tend) of Deorbit
- (A) Time when perigee altitude crosses for the first time the next lower altitude (defined by multiples of 50 km).
- (R) Time where the Reliability is closest to a 1 decimal fixed value (e.g. 0.9, 0.8, 0.7 ...).
- (S) Time where the stability index changes (e.g. satellite becomes stable/unstable)
- (DI) Time where the satellite rotational acceleration is maximum
- (DE) Time where the external disturbance torques are maximum
- (DC) Time where the module of the aerodynamic and solar radiation pressure forces are comparable

This output file is compatible with commercial spreadsheet tools

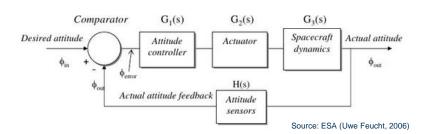


Output (20F)

	Α	В	C	F	G	Н	I	J	K	L	M	N
1	Cod€▼	Code 🔻	Key event 🔻	Time after T0 (years) 🔻	Time (YYYY.Dec)	R (-) 🔻	a (km 🔻	e (-) 🔻	hp (kn ▼	ha (kn ▼	i (deg ▼	RAAN (d ▼ Pei
2	1	То	Start of deorbit	0.0000	2011.0865	1	7052.588	0.045194	355.85	993.32	99.457	0
3	5	DI	Maximum rotational acceleration	0.0212	2011.1077	0.993323	7046.881	0.043295	363.79	973.98	99.47267	9.044913
4	2	Α	Crossing perigee altitude 350 km	0.1625	2011.2489	0.950019	7022.848	0.041964	350.14	939.55	99.5402	69.42928
5	6	DEF	Maximum disturbance accelerations: 1.273e-07 m/s2	1.6063	2012.6927	0.602364	6918.617	0.026843	354.90	726.33	99.43868	342.7127
6	7	DC	Similar aerodynamic and solar pressure	2.4465	2013.5329	0.462069	6833.373	0.016916	339.78	570.97	99.48749	8.677904
7	2	Α	Crossing perigee altitude 300 km	2.8569	2013.9433	0.405941	6731.525	0.007931	300.14	406.91	99.43655	205.8055
8	2	Α	Crossing perigee altitude 250 km	2.9341	2014.0205	0.396167	6668.311	0.006028	250.11	330.51	99.40049	244.5134
9	6	DET	Maximum disturbance torque: 181.9933 μNm	2.9573	2014.0437	0.393284	6617.653	0.004594	209.25	270.05	99.38843	256.4806
10	1	Tend	End of deorbit	2.9577	2014.0441	0.393229	6602.875	0.003748	200.13	249.62	99.39321	256.7216
11	2	Α	Crossing perigee altitude 200 km	2.9577	2014.0441	0.393229	6602.875	0.003748	200.13	249.62	99.39321	256.7216
12	2	Α	Crossing perigee altitude 150 km	2.9621	2014.0485	0.392686	6542.669	0.002226	150.11	179.23	99.39266	259.0627
13												
14												
15											10	000
16			Start of deorbit		2011.0865				355.85	993.32		900
17			Crossing perigee altitude 350 km		2011.2489				350.14	939.55		800
18			Crossing perigee altitude 300 km		2013.9433				300.14	406.91		700
19			Crossing perigee altitude 250 km		2014.0205				250.11	330.51		
20			Crossing perigee altitude 200 km		2014.0441				200.13	249.62		600
21			Crossing perigee altitude 150 km		2014.0485				150.11	179.23	:	500
22												400
23												300
24												
25												200
26												100
27												0
28												2011.00 201
29												

Outputs (graphics)

Torques variate with several orders of magnitudes!...


... Yes, but only during the final (small) portion of time

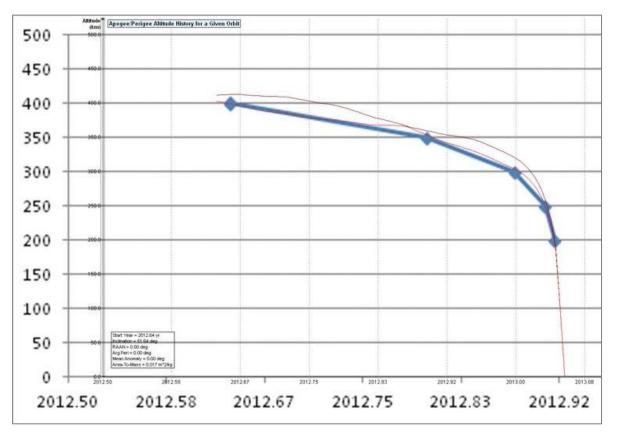
Two complementary tools:

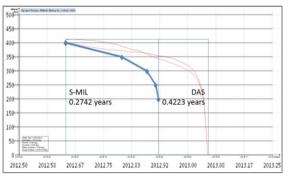
- The S(imple)-MIL is to be used first, to simulate the whole deorbit and to identify (+ quantify) key events,
- The C(omplex)-MIL implements conventional and non-conventional ADCS sensors and actuators models, together with their relative control loops to support the design of the ADCS/GNC subsystem necessary for active attitude control during deorbit,
- The C-MIL is to be run only for several orbits, identified previously as key events
- Such (iterative) usage of C-MIL is intended to ultimately identify the ADCS/GNC subsystem required for the complete deorbiting

В	С	F		
Code:	Key event 🔻	Time after T0 (years)		
To	Start of deorbit	0.0000		
DI	Maximum rotational acceleration	0.0212		
Α	Crossing perigee altitude 350 km	0.1625		
DEF	Maximum disturbance accelerations: 1.273e-07 m/s2	1.6063		
DC	Similar aerodynamic and solar pressure	2.4465		
Α	Crossing perigee altitude 300 km	2.8569		
Α	Crossing perigee altitude 250 km	2.9341		
DET	Maximum disturbance torque: 181.9933 μNm	2.9573		
Tend	End of deorbit	2.9577		
Α	Crossing perigee altitude 200 km	2.9577		
Α	Crossing perigee altitude 150 km	2.9621		

Clean Space Industrial Days ESA/ESTEC, 23-27 May 2016

Validation of the S-MIL


Deorbited missions

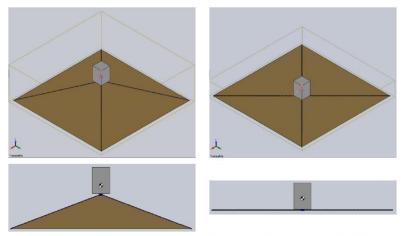

- Validation of the S-MIL was performed as agreed with 7 real test cases of already deorbited missions
- Validation consisted of both quantitative (QN) and qualitative (QL) comparisons wrt real/effective (TLE) and DAS-simulated deorbit data
- Both QN (see table here aside) and QL (see next slides) comparisons confirmed the validity hence the suitability of the S-MIL tool for subsequent usage in DGNC

Satellite	S-MIL (yrs)	S-MIL/Real	DAS/Real
SFERA	0.2766	1.05	1.58
Ande-Castor	0.2314	0.22	0.88
INVADER	0.3642	0.71	1.01
Dove-1	0.0176	1.20	1.85
Navid	0.1111	0.70	0.90
GEO-IK2	2.9621	1.21	1.38
NanoSail-D2	0.4006	0.61	1.00
Min		0.22	0.88
Avera	ge	0.82	1.19
Average* (excl.	Min and Max)	0.86	1.13
Max	ζ	1.21	1.85

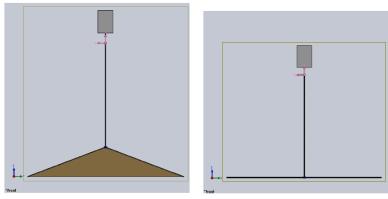
Graphical comparisons

Similar altitude profiles between S-MIL and DAS

Clean Space Industrial Days ESA/ESTEC, 23-27 May 2016



DGNC project results achieved so far and next project's activities until Final Presentation



Sat+DRS/SRS alternatives

- Trade-offs for Best DRS/SRS configuration (GNC point of view)
 - 4 DRS/SRS configurations defined (ARROW, FLAT, ARROW OFFSET, FLAT OFFSET)
 - 6 DRS/SRS Pyramidal angle defined (0, 15, 30, 45 deg) + (5, 10)
 - 4 DRS/SRS Boom length defined (3.54, 5, 10, 15m)
 - 2 Attitude modes simulated (Fixed, Tumbling)

Isometric and front views of Arrow (left) and Flat (right) DRS/SRS

Front views of Arrow Offset (left) and Flat Offset (right) DRS/SRS

Weight sets

- Trade-offs for Best DRS/SRS configuration (GNC point of view)
 - Three sets of weights have been used, as part of the sensitivity analysis:
 - Balanced: 30/25/40%
 - GNC TorqueComponents : 20/20/60% (0% for Modulus)
 - GNC TorqueModulus : 20/20/60% (40% for Modulus)
- Confirmed conclusions (1000 kg Sat+DRS/SRS)
 - "Avoid Offset DRS/SRS Configurations"
 - "Better Flat than Arrow shaped"
 - "Optimise Boom Length"

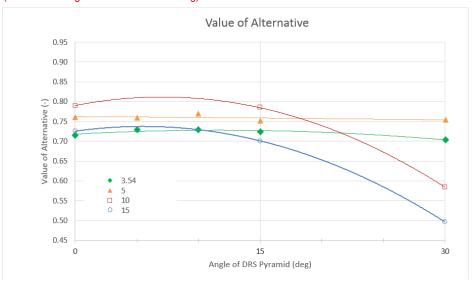
	Description	Weight
1D-Val. Funct-01	Sail S/S Mass	0.15
	Nb of Booms	0.15
1D-Val. Funct-03	DAS Deorbit Duration	0.10
1D-Val. Funct-04	S-MIL Deorbit Duration	0.15
1D-Val. Funct-05	Global Stability	0.20
1D-Val. Funct-06	Abs Avg Torque (X : roll)	0.05
1D-Val. Funct-07	Abs Avg Torque (Y : pitch)	0.10
1D-Val. Funct-08	Abs Avg Torque (Z : yaw)	0.10

Weights used for the "Balanced" MOVA

	Description	Weight
1D-Val. Funct-01	Sail S/S Mass	0.10
1D-Val. Funct-02	Nb of Booms	0.10
1D-Val. Funct-03	DAS Deorbit Duration	0.05
1D-Val. Funct-04	S-MIL Deorbit Duration	0.15
1D-Val. Funct-05	Global Stability	0.05
1D-Val. Funct-06	Abs Avg Torque (X : roll)	0.05
1D-Val. Funct-07	Abs Avg Torque (Y : pitch)	0.25
1D-Val. Funct-08	Abs Avg Torque (Z : yaw)	0.25

Weights used for the "GNC - T. Components" MOVA

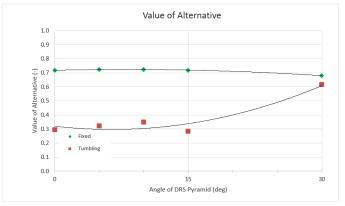
	Description	Weight
1D-Val. Funct-01	Sail S/S Mass	0.10
1D-Val. Funct-02	Nb of Booms	0.10
1D-Val. Funct-03	DAS Deorbit Duration	0.05
1D-Val. Funct-04	S-MIL Deorbit Duration	0.15
1D-Val. Funct-05	Global Stability	0.05
1D-Val. Funct-06	Abs Avg Torque (X : roll)	0.05
1D-Val. Funct-07	Abs Avg Torque (Y : pitch)	0.05
1D-Val. Funct-08	Abs Avg Torque (Z : yaw)	0.05
1D-Val. Funct-09	Module Avg Torque	0.40


Weights used for "GNC – T. Modulus" MOVA

« Better Flat than Arrow »

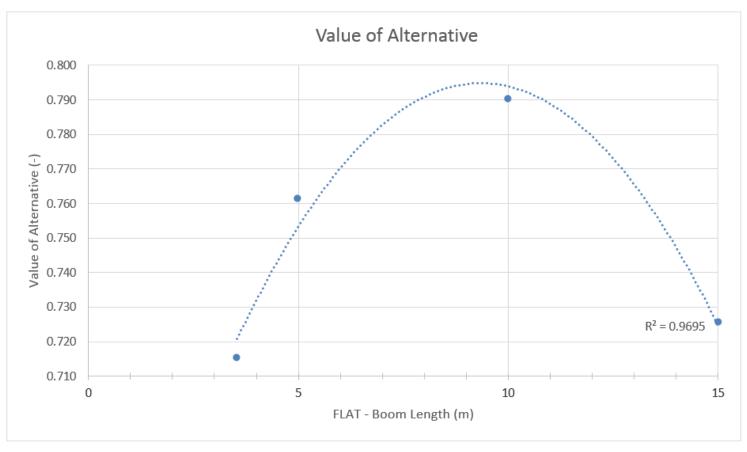
Min/max ranges for all boom lengths:


(Value is average of Fixed and Tumbling)


Value of alternative is either almost constant or decreases with increasing DRS/SRS pyramidal angle (BALANCED)

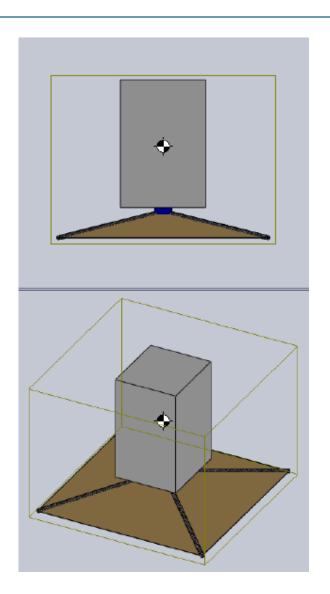
Only when <u>focusing on GNC (Torques)</u>, value <u>for Tumbling cases</u> with small booms increases for DRS/SRS angles > 10 deg

Min/max ranges for 3.54 and 5m boom lengths:


Value of alternative when limiting the MOVAs to small boom configurations and ranges – here for 3.54 m (BALANCED)

Value of alternative when limiting the MOVAs to small boom configurations and ranges – here for 3.54 m (GNC MODULUS)

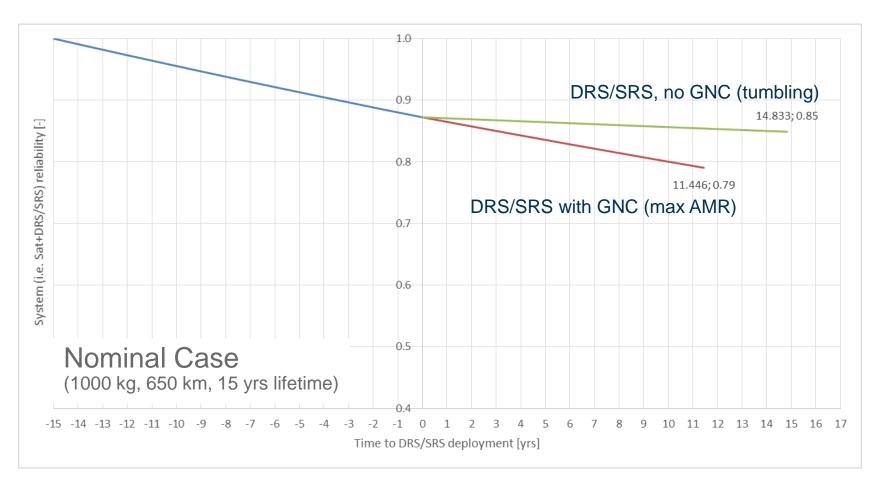
« Optimise Boom Length »



Value of alternative (here for FLAT) with increasing boom length (BALANCED)

« Nominal Case »

- Main characteristics:
 - Sat+DRS/SRS: 1000 kg
 - DRS/SRS: Arrow, 3.54m booms, 10 deg
 - Deorbit from 650 km after mid 2021
- Sat (alone) deorbit: close to 50 years
- Sat+DRS/SRS deorbit:
 - Active ADCS/GNC: 11.5 years
 - No Attitude control: 14.8 years
- Propulsion alternative (chemical):
 - Remainings (indirect): 5.0 kg to 25 years orbit (650x595 km)
 - Direct re-entry: 82.5 kg to burn in few days

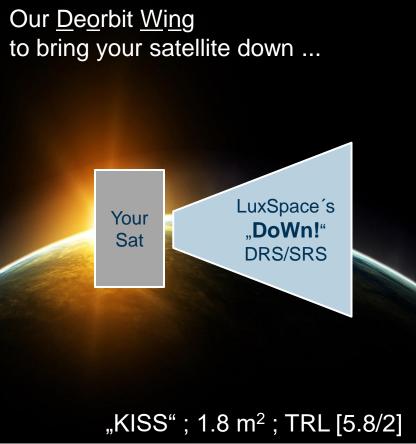

Currently ...

- Upgrading the S-MIL into the C-MIL,
- Complementing the previous (GNC) trade-offs with a new one relating to FDIR and Operational aspects:
 - Eval. Criteria:
 - "25 yrs" rule compliancy
 - Reliability
 - Costs of operations
 - Risk of collisions

- Alternatives:
 - 1. Sat alone
 - 2. DRS/SRS, no GNC
 - DRS/SRS with GNC controlled by Ground
 - 4. DRS/SRS with autonomous GNC
 - 5. Direct re-entry with Prop
 - 6. Indirect re-entry with Prop

Reliability during de-orbit with DRS/SRS

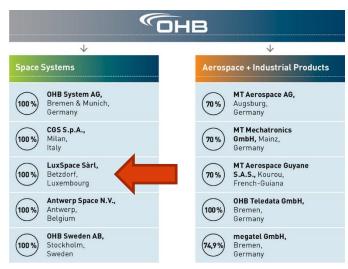
Based on J.-F. Castet and J. H. Saleh works and publications


Before Summer 2016 ...

- Design and modelisation of the ADCS/GNC subsystem (and its FDIR) architecture required for the active attitude control of Sat+DRS/SRS during deorbit,
- 2. Verification of the proposed ADCS/GNC architecture with the C-MIL,

 Compilation of the project synthesis and the final recommendations with respect to best GNC solution for satellite (debris) deorbiting thanks to Dragsails.

Clean Space Industrial Days ESA/ESTEC, 23-27 May 2016


Brief presentation of LuxSpace, an OHB Company

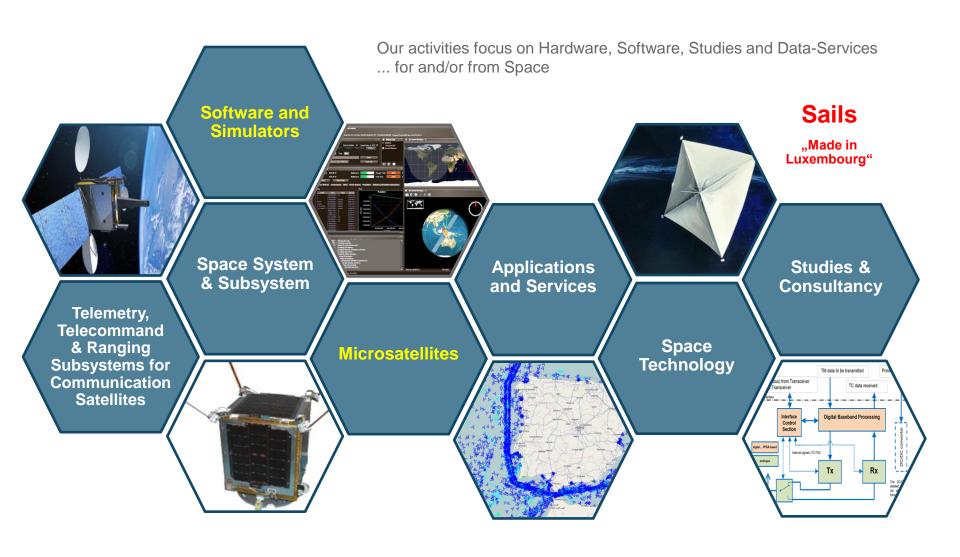
OHB: the European company for Space Technology & Security, Telematics and Satellite Services

Brief portrait

- Domiciled in Bremen, OHB SE is Germany's first listed aerospace and technology company.
- With over 30 years of experience in high technology, the Group is ideally positioned as one of the leading independent forces in the European aerospace and aeronautics industry.
- OHB SE currently relies on the skills and the high motivation of (about) 2.000 Employees.

More on: www.ohb.de

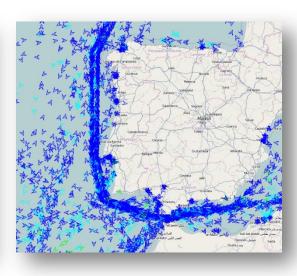
LuxSpace


Brief portrait

- Founded in November 2004
- Business activities started in January 2006
- 100% owned by OHB
- Offices located in at Betzdorf, Luxembourg
- ISO 9001:2008 certified since 2008
- 40 staff from 12 different countries.


More on : www.luxspace.lu





Our most relevant projects

TT&R Subsystems for SGEO

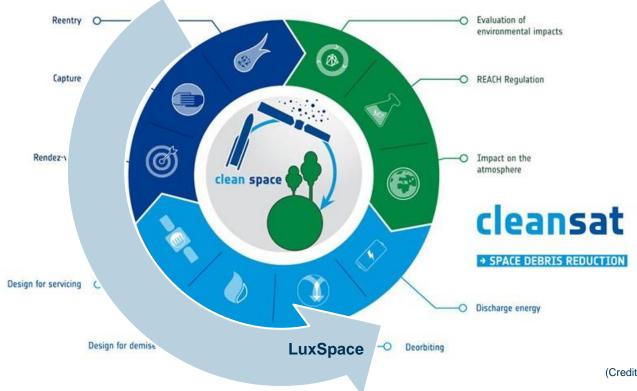
- HAG-1
- EDRS-C

Launched Microsats

- VesselSat 1 (since Nov. 2011)
- VesselSat 2 (since Jan. 2012)

Spaceborne Data Collection

- AIS (also for NATO)
- ADS-B (Phase 0/A)


Our areas of expertise/competence

e.deorbit

ecodesign

→ ACTIVE DEBRIS REMOVAL

→ ENVIRONMENTAL IMPACTS

(Credit: ESA)