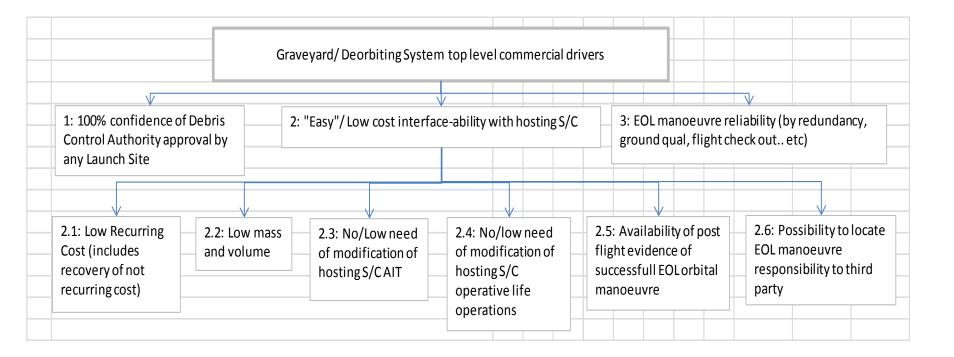
Cost versus Reliability and Safety trade-off considerations for Systems with very long in-flight storage lifetime; a case study for Graveyard/ Deorbiting Systems


Authors: S.Antonetti (1); M.Balduccini (2); E.Toson (1); M.Valli (1) Affiliation: (1)D-Orbit; (2) MaBa Consulting

CONTENTS

- Top level commercial drivers and identification of conflict situations
- Mission characteristics
- Typical Trade-Offs definition and approach
- Case study: standardized add-on module for Graveyard/Deorbiting manoeuvre of GEO/LEO host spacecraft

Top level commercial drivers and identification of conflict situations

		1	2.1	2.2	2.3	2.4	2.5	2.6	3
1	100% confidence of Debris Control Authority approval by any Launch Site		С	no	no	С	no	tbd	no
2.1	Low Recurring Cost (includes recovery of not recurring cost)			CC	С	no	CC	С	CC
2.2	Low mass and volume				no	no	С	no	С
2.3	No/Low need of modification of hosting S/C AIT					no	no	no	tbd
2.4	No/low need of modification of hosting S/C operative life operations						no	С	СС
2.5	Availability of post flight evidence of successfull EOL orbital manoeuvre							no	no
2.6	Possibility to locate EOL manoeuvre responsibility to third party								no
3	EOL manoeuvre reliability (by redundancy, ground qual, flight check out etc)								

Legenda: C= conflicting req's; CC= strongly conflicting req's; no= not conflicting req's

<u>I</u> - Long pre-operative flight storage time (and combined with orbital environmental conditions)

This mainly for the graveyard mission in GEO, where nowadays communication operative missions lifetime are significantly exceeding 15 years.

<u>II – Existence of failure cases with potential population safety hazard (deorbiting)</u> Both controlled and semi-controlled Earth Re-Entry manoeuvre are characterized by failure cases where anomalies on Propulsion or Attitude and Orbit Control HW/ SW could result in Earth footprint on populated areas with consequent risk of casualties.

<u>III- Existence of failure cases with potential direct damaging of third party properties</u> (both Deorbiting and Graveyard)

Typical of Graveyard manoeuvre is the case where, again, anomalies on Propulsion or Attitude and Orbit Control HW/ SW could result in impact on other GEO S/C or in satellite fragmentation so leading to a significantly higher probability of new collisions in the GEO protected zone. No specific limitation of such failure scenario seems defined by actual norms.

- **TO1:** Deorbiting / Graveyard module functionally independent, or utilizing host SC H/W
- **TO2:** Deorbiting / Graveyard module physically independent, or with its HW integrated within the hosting SC
- **TO3:** More complex vs simpler (less performing) design; equipment and system levels
- **TO4:** Improvement of reliability by using extended qualification vs use of redundancy
- **TO5:** Reliability vs total cost (recurring)
- **TO6:** Trade Off for defining the detailed content of the in-flight check-out and the ranges of test results that can consent the execution of the EOL manoeuvre as planned
- **TO7:** Reliability calculation based on absolute worst cases, or on expected figures plus justified, quantitative margin (need to avoid non homogeneous review by the Launch Site Authorities)

TO1: Deorbiting / Graveyard module functionally independent, or utilizing host SC H/W

Legenda: +++: strongly preferred; +: preferred; -= not preferred

Trade Off Options	Recurring cost	Not Recurring cost (1)	Schedule and AIT	Host SC easy IF & intrusivity	Easy of approval/ qualif.	Mass and Volume	Debris respons. focusing
<u>Functionally</u> independent wrt hosting SC		+++	+++	+++	+++		+++
Partly utilizing hosting SC capabilities	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Utilizing at max extent hosting SC capabilities	+++	-				+++	

Notes:

(1): with consequent impact on recurring cost as well

(2): it depends from the detail of the residual equipment integration within hosting SC

TO4: Improvement of reliability by using extended qualification vs use of redundancy

Legenda: +++: strongly preferred; +: preferred; -= not preferred

Trade Off Options	Recurring cost	Not Recurring cost (1)	Schedule and AIT	Host SC easy IF & intrusivity	Easy of approval/ qualif.	Mass and Volume	Debris respons. focusing
Max use of extended qualification	+++		+	Na	-	++	Na
Intermediate approach	(2)	(2)	(2)	Na	(2)	(2)	(2)
Max use of redundancy		+++	-	na	+		Na

Notes:

(1): with consequent impact on recurring cost as well

(2): it depends from the detail of the residual equipment integration within hosting SC

Case study: standardized add-on module for Graveyard/Deorbiting manoeuvre of GEO/LEO host spacecraft (D-Orbit)

T01	Functionally independent wrt	Partly utilizing hosting SC	Utilizing at max extent	
	hosting SC	capabilities	hosting SC capabilities	
TO2	Physically independent wrt	Partly integrated within the	Integrated within the	(1)
	hosting SC	hosting SC	hosting SC	
TO3	Max use of more complex (and	Max use of simpler design (and		
	more performant) equipment	additional margins)		
TO4	Max use of extended	Intermediate approach	Max use of redundancy	(2)
	qualification			
TO5	Reliability at the minimum	Higher reliability due to cost of		(3)
	allowed by norms	failure		
TO6	Extended in-flight check-out	Intermediate approach	Minimum in-flight	(3)
			check-out	
T07	Reliability calculation based on	Reliability calculation based on		(4)
	absolute worst cases	expected figures plus justified,		
		quantitative margin		

Legenda: Actual design based on Trade Off options in yellow

(1)In order to minimize total mass and volume, approach is to utilize "add-on" independent equipment, but integrated in the host S/C layout

(2) Redundancy utilized where impact on mas and volume is minor only

(3)Trade-off analyses still running

(4)Simultaneous occurrence of worst case independent scenarios is not realistic and leads to very penalizing figures

All D3 classes can be configured with a dedicated Thrust Vector Control and Terminal Attitude Unit

Design

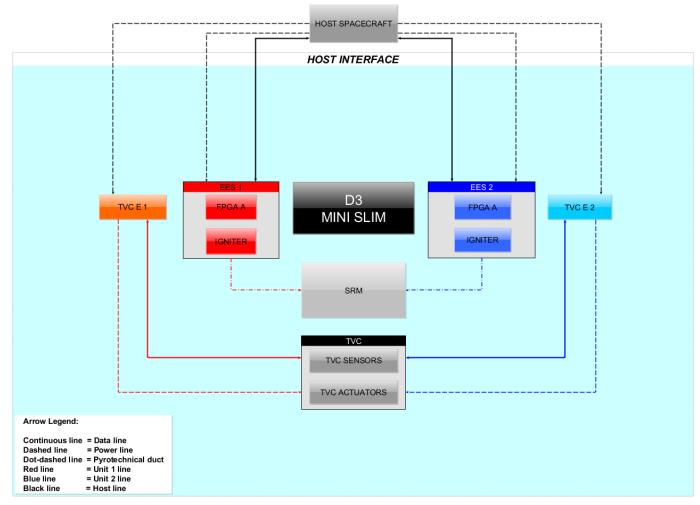
Telemetry, Tracking and Command (TT&C) Electrical Power Subsystem (EPS) Electro-Explosive Subsystem (EES) Solid Rocket Motor Command and Control Unit (CCU)

Electrical Interfaces (customizable upon request)

Power Interface24/28 VData InterfaceMIL-STD-1553 / CAN / SpaceWire

Quality and Reliability

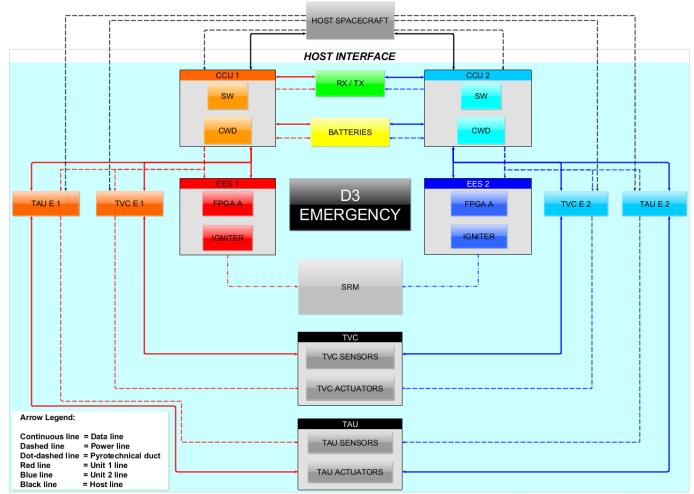
Compliance with Safety Standard MIL-STD-1573


Components Level Predicted Reliability Fail-Safe Architecture SCC-B to Extended Range > 0.999

- Single-point-of-failure free
- Critical software B-class

MaBaconsulting

D-Orbit module schematic: Dependent for AOCS, communication, power aspects and computational aspects



Note: Decommissioning module within the blue highlighted area

MaBaconsulting

D-Orbit module schematic: fully authonomous

Note: Decommissioning module within the blue highlighted area

MaBa consulting

CLASS	Ex. Application		NFIGURATION (Basic)	STANDARD CONFIGURATION (with Telemetry, Tracking and Control subsystems)			
		Mass [kg]	Envelope [mm]	Mass [kg]	Envelope [mm]		
D3.S20	200kg/500km	22	320x320x300	22	320x320x350		
D3.C180	1.1ton/750km	144	1000x1000x500	146kg	1000x1000x550		
D3.C360	2.4ton/700km	221	1100x500x900	223	1100x500x1000		
D3.MEO	800kg/23000km	21	350x350x400	23	350x350x450		
D3.GEO	4ton/36000km	38	350x350x500	40	350x350x450		
D3.GEO	6ton/36000km	46	350x350x500	48	350x350x550		

MaBaconsulting

Stefano Antonetti; D-Orbit; Sales and Business Development +39 02 3671 4010; mobile: +39 344 08 58 356 <u>Stefano.antonetti@deorbitaldevices.com</u>

Mauro Balduccini; MaBa Consulting SrL; Managing Director +39 335 74 31 423 <u>mbalduccini@mabaconsulting.it</u>

