

Efficient Deorbiting with the IFM Nano thruster

26th May 2016 Clean Space Industry Days

FOTEC Forschungs- und Technologietransfer GmbH

Research Subsidiary of the University of Applied Sciences Wiener Neustadt

■ Founded: 1998

■ Employees: 35

■ R&D Turnover : 2 Mio. EUR

More than 25 national and international R&D Projects ongoing

ISO 9001:2008 certified since October 2011

FOTEC Propulsion Laboratories 2016

Key Figures for Space Activities (Q1 2016)

FOTEC Electric Propulsion Capabilities

Thruster (FEEP)

- Capillary Emitter
- Porous Multiemitter
- 1µN to 2mN continuous operation
- ISP 5000+
- Mass efficiency 40-60%

Testing/ Qualification

- Vacuum Facilities
- Plume Diagnostics
- Direct Thrust Measurements
- Environmental Testing
 - TVT, Thermal, Vibration

Innovative Gas Storage

- High density Low Pressure Gas storage
- H2, He
- Xe

Simulations

- S/C Plasma interactions
- CEX simulations

Liquid Metal Ion Sources and Field Emission

- Over 30 years of flight experience with Liquid Metal Ion Sources (LMIS).
- Up to now, FOTEC is the only company worldwide that has flight heritage with liquid metal ion sources.

Experiment	Function	Spacecraft	Nr. of LMiS	Operation Time	
LOGION	Test of LMIS in μ-Gravity	MIR	1	24 h (1991)	
MIGMAS/A	Mass Spectrometer	MIR	1	120 h (1991-94)	
EFE-IE	S/C Potential Control	GEOTAIL	8	600 h (1992 -)	
PCD	S/C Potential Control	EQUATOR-S	8	250 h (1998)	
ASPOC	S/C Potential Control	CLUSTER	32	Ariane 5 Launch Failure 1996 Still operational after Crash	
ASPOC-II	S/C Potential Control	CLUSTER-II	32	6516 (2000 -)	
COSIMA	Mass Spectrometer	ROSETTA	2	Fully Operational, Experiment Ongoing	
ASPOC/DSP	S/C Potential Control	DoubleStar	4	8979 h (2004 – 2007)	
MMS ASPOC	S/C Potential Control	MMS	32	Commissioned successfully in 2015	

History of In-FEEP Developments

IFM-350: the mN-FEEP thruster

- liftime testing ongoing, 8700h completed
 - No degradation in performance
 - Stable mass efficiency >40%
- Performance characterization on large number of emitter ongoing

Reissner et al., "Detailed Performance Characterization of the mN-FEEP Thruster.", SPC 2014

IFM Nano Thruster Spin-Off

mN-FEEP thruster developed for ESA missions

Formation Flight Control 1mN N-S Station Keeping / Orbit Raising
1N

Constellation of 1-15 kg satellites

Formation Flight Control 1µN

Drag Compensation / Orbit Raising 1mN

technology development

mN-FEEP thruster Re-Designed for Nano and Micro-Satellites

No miniaturization necessary!

Building on 10 years of ESA

Thruster Design Concept

- Each module includes in a 10x10x6 cm
 Volume and <800g
 - Ion Emitter
 - Propellant
 - Propellant Heater
 - High Voltage Electronics
 - Power Processing Unit
 - 2 Neutralizer

Thruster Performance (7 Module Configuration)

Thruster Performance (7 Module Configuration)

Nominal Performance

	Full Dance	Individual Module		7 Modules	
Full Range		High Thrust Operation	High Isp Operation	High Thrust Operation	High Isp Operation
Thrust	1 μN – 1 mN	340 μΝ	220 μΝ	2.4 mN	1.5 mN
ISP	2000 - 4500 s	3000 s	4500 s	3000 s	4500 s
Tank Sizes	10 - 250 g	250 g		1750 g	
Total Impulse**	up to 10,000 Ns	3680 Ns	5520 Ns	25 760 Ns	38 640 Ns
Power Demand	2.5 - 80 W	32 W (28 W**)		224 W (196 W**)	
Outside Dimension	0.6 - 1 dm³	10 x 10 x 10 cm		Ø30 x 10 cm	
Dry mass		700g			
System Efficiency		85%	*** For pulsed mode with extended duty cycle		ed duty cycle
<u>Demonstrated</u> lifetime of the emitter		9600 h			

Development Status

IOD on the ICEYE Constellation

- 50kg / 200W spacecrafts
- Initial Orbit Maneuver from 600km to ~400km
 high Thrust operation
- 2 years of drag compensation high lsp Operation
- First FM delivered Q1 2017
- IOD planned in Q4 2017

Advantages

- High Impulse Density (x10)
- High Thrust / High Isp
- No Pressurized Components or Chemicals – Inert Launch Conditions
- Low Cost (COTS Components)
- High Modularity No SPF

Disadvantages

- High P/T Ratio (x2)
- COTS Components (PPU)