CHARDEM

EXPERIMENTAL INVESTIGATIONS ON THE DEMISABILITY OF SPACE RELEVANT MATERIALS

T. Schleutker, A. Gülhan; DLR, Supersonic and Hypersonic Technology Department

Knowledge for Tomorrow

- T. Lips, Hyperschall Technologie Göttingen GmbH
- E. Kaschnitz; Österreichisches Gießereiinstitut
- B. Bonvoisin, ESA/ESTEC

What is CHARDEM?

- Characterisation of Demisable Materials
- ESA-funded TRP project
- That targets the demisability on material level
- With four project partners

QinetiQ

GI 💋

CHARDEM - Materials

Widely used and/or prominent representatives chosen and manufactured by QinetiQ:

Silicon Carbide

High Pres. Tank

Solar Panel

Standard demisability test procedure

Developed by HTG, consists of:

- Measuring of all demise relevant thermophysical properties
- Demise testing in high enthalpy wind tunnels with standardized samples and test conditions
- Post-test analyses depending on material and open questions from demise testing
- Numerical rebuilding of the wind tunnel experiments

Thermophysical characterization

Intensive analyses were conducted by ÖGI, including:

- Specific heat capacity, heat of solid state phase transitions and heat of fusion
- Density and volume expansion
- Thermal conductivity
- And detail specific additional analyses

Demise testing

26 demise experiments were conducted at LBK facilities of DLR.

- Low heat flux and/or high heat flux tests, depending on demisability of the material
- Conditions determined by reference missions defined by ESA; re-entry from circular low earth orbit and highly eccentric orbit (131,000 x 75 km)

Test condition		L2K	L3K
Reservoir temperature	[K]	4356	6462
Specific enthalpy	[MJ/kg]	8.7	15.9
Free stream static pressure	[hPa]	1.43	1.13
Free stream static temperature	[K]	567	601
Free stream velocity	[m/s]	2984	4069
Measured pitot pressure	[hPa]	61.0	84.4
Measured cold wall heat flux	[MW/m²]	1.2	2.3
Maximum test duration	[s]	200	400

Demise testing

Post test analysis

- Post-test analyses of metallic samples (AA7075, AISI 316L, Ti6AI4V) was conducted at ÖGI.
- CFRP and SiC samples were analyzed at institutes dedicated to the material category
- Techniques included
 - Scanning electron microscopy
 - Laser Raman microprobing
 - Hardness testing
 - Infrared spectrometry
 - Scanning accoustic microscopy
 - And many more

Surface of tested steel sample

Intact (left) and collapsed (right) "bubble" on the surface of sample above

Numerical simulation

Demise experiments were simulated by HTG

- Using SCARAB (state-of-the-art demise simulation tool)
- And the thermophysical data gathered by ÖGI as well as the old data of the tool

Numerical simulation of wind tunnel test, temperature gradient normal to surface

Temperature [K]

²⁰⁰ SCARAB simulation of complete satellite ¹¹⁰⁰ ¹¹⁰⁰

Example – CFRP based samples

Three different types of CFRP based samples:

Monolithic CFRP

Solar panel

Example – Monolithic CFRP, close-up

Example – Monolithic CFRP, wide view

Example – High pressure tank, close-up

DLR

Example – Tank sample, pyrometers

Example – CFRP samples after testing

Example – CFRP based samples

"Old CFRP approach":

- Use of metallic material model, assumption of instant burn up at certain temperature
- Constant heat flux
- Radiation depending only on surface temperature
 - → Resulting demisability comparable to aluminum

Reality:

- Pyrolysis of matrix
 - Chemical heat sink
 - Effectively transpiration cooling
 - Reducing heat flux
 - Changing surface emissivity, catalycity, roughness, ...
- Oxidation of fiber/matrix
 - Chemical heat source
 - Depending on oxygen availability
- Different macroscopic demise behavior
 - Slow burn up limited by oxygen or
 - Fast blow off of dried fibers

Example – CFRP based samples

New CFRP modelling approach (SCARAB*) :

- CFRP composed of two materials (fiber and matrix)
- Separate calculation of both
- Demise of matrix through pyrolysis and slow oxidation of dry fibers

Mass of sample	CFRP	Tank
Measured, before test	48.7 g	32.7 g
SCARAB, before test	48.1 g	32.6 g
Measure, after test	16.6 g	10.3 g
SCARAB, after test	41.6 g	8.9 g

*B. Fritsche, Modelling the Thermal Decomposition of Carbon Fibre Materials During Re-Entry, 6th European Conference on Space Debris

Conclusions and outlook

- A lot of data has been gathered that's both valuable and surprising
- Big gaps in knowledge and understanding of all types of materials have been unveiled
- Potential for increasing demisability has been found
- Website and database are in preparation
- Final meeting will take place soon (ESTEC, 7th of June)

