

Destructive Re-entry Modelling: SAM Development and Approach

James Beck, Ian Holbrough; Belstead Research Ltd (UK) Jim Merrifield; Fluid Gravity Engineering Ltd (UK)

ESA Clean Space Industry Days, 23-27th May 2016 PR00000/D08

Destructive Re-entry Processes

Parent spacecraft at initial decay altitude

(120 -124 km)

- Initial entry
- Fragmentation
- Aerothermal heating
- Material response
- Uncertainty

PR00000/D08

Solar Arrays break-off

(90 - 95 km)

Validating Models

- How do we know that our model is representative?
 - Very easy to get an answer : Very hard to get a good answer
- Validation Data: top-down
 - Flight data would be ideal; limited observations
 - Currently available data is macro-scale
 - Only really suitable for tuning very basic models
- Validation Data: bottom-up
 - Each submodel can be verified against existing/new data
 - Experimental testing (where available)
 - Higher fidelity modelling (CFD, FEA, Ablation codes, ...)
 - This provides a grounding for the basic models
 - If the model can't do this... then is your answer good?

General Modelling Approaches

- Object Oriented
 - Single breakup; Simple child objects; 3 DOF analysis
- Spacecraft Oriented
 - Complete panel representation of spacecraft; 6 DOF analysis
 - Predictive fragmentation model
- Validation
 - Majority is code-to-code, some macro-level tuning comparisons
 - Some material phenomenology tests (quantitative modelling?)
 - No aerothermal heating comparisons (up to SCDW)
 - No fragmentation experiments (up to CleanSat BBs)

Spacecraft Aerothermal Model (SAM)

- Basic Philosophy
 - Physical Understanding
 - Capture important phenomenological effects in model
 - Account for uncertainties in models/physical processes
 - Provide Confidence in Modelling
 - Bottom-up validation of models
 - Testing (preferred); CFD; Literature data
- Modelling Approach
 - Determine the important physics
 - Capture the important physics and uncertainties
 - Verify the modelling against available data (or generate data!)

Driving Phenomena

- 6DOF aerodynamics
- Aerothermodynamic heating
 - Large impact
 - Extremely difficult to get good answer on arbitrary shapes
- Materials and material response
 - Generally poorly represented; equivalent metal insufficient
- Fragmentation processes
 - Least well understood very high uncertainty
 - Main driver of risk
- Uncertainty
 - Mandatory as standard. *Accuracy* and *Precision* analyses

SAM Spacecraft Model

- Set of Components connected by Joints
 - Full geometry, primitive representation
 - Aerodynamics and heating generated for each configuration
 - Fragmentation by joint failure or component failure

Aerothermodynamic Heating

- Generally used models
 - Correlation based; ORSAT numbers most common (from SAE)
 - Sphere heating, box heating about 20% high in general
 - Cylinder heating from Klett is good
 - Average heating better than specific location heating
- SAM uses streamlength-dependent models
 - Basic shapes
 - Higher fidelity than shape correlations or inclination methods
 - Verification of flux profiles; literature tests and CFD (SCDW)
 - Can construct average heating
 - Demonstrates errors in "standard" correlations
 - Demonstrates errors in inclination methods

Aerothermodynamic Heating

- Complex Shapes
 - Inclination models used robust, but inaccurate
 - Planned tests at Oxford University on compound shapes
 - Will provide first data for improved modelling of complex shapes
- Uncertainties on heating are high
 - At least 10% at stagnation point
 - At least 20% at a point on a primitive object
 - Much higher on an arbitrary object
 - Inclination model is >40% in error on long cylinder
 - There is no good heating model for concave shapes (cavities / open spacecraft)
 - There is no good heating model for multiple length scales
 - Inclusion of uncertainties is vital

Material Response

- Generally used models
 - Many codes use an 'equivalent metal' approach
 - Inadequate representation of ablative materials
 - Materials such as glasses fail before melt
- Non-metallic materials becoming more common
 - CFRP structures
 - SiC mirrors, optical glass lenses, high performance materials
- SAM uses appropriate material models
 - Bulk heating for high conductivity
 - Heat balance integral for low conductivity
 - Equivalent diffusivity heat balance integral with outgassing / blowing / de-densification for ablators
 - Model for glasses in development (ESA TRP)

Material Response

- Improved Validation Data
 - Oxidation of material increases surface emissivity
 - Testing suggests this is likely material state; not generally used
 - Partial catalycity to recombination at surface reduces heating
 - Testing suggests important (~20%); only used in SAM code
 - Required correct material data *and* correct phenomenology
- Final Demise
 - What does the final collapse of a material look like?
 - How does the area/ballistic coefficient change as it fails?
 - All current models are essentially arbitrary with no validation
 - No satisfactory model exists for "balloon problem"

Fragmentation Modelling

- Generally used Models
 - Catastrophic breakup; based on VAST/VASP tests
 - Spacecraft-oriented codes: Melt driven fragmentation
- SAM uses joint based fragmentation
 - Joints are weak points; mechanically, and often thermally
 - Intuitive expectation that fragmentation occurs at weak points
 - Basis of unique SAM fragmentation model
 - No (previous) data to support/deny this assertion
 - Joints can fail by a number of methods:
 - Melt
 - Force (function of temperature)
 - Thermal stress

Fragmentation: Missing Knowledge

- Fragmentation Model Phenomenology
 - Do we have the right phenomenologies?
 - How do we determine the correct mechanisms?
 - Can we construct a realistic model without understanding the correct phenomena?
- Data for Model Construction
 - Identify fragmentation mechanisms
 - Do different vehicles have different mechanisms?
 - How important are joints/fasteners?
 - Identify driving material properties
 - What are the key parameters determining the process?
 - How important is the correct material response?

Fragmentation: First Test Campaign

- CleanSat Building Block
 - Testing of sandwich panel adhesive; inserts
 - Testing of bolts/brackets with differential CTE
 - Failure temperatures well below structure melt
 - But heat soak and forces important
- Implications
 - Panel failure expected at panel level; not melt
 - No fragmentation by melt seen even with no applied force
 - Below TBD (~78km?) Forces expected to Fail Joints
 - Melt model is not appropriate
 - Late item release below TBD (~70km?) questionable
 - Temperature / force balance to be established

Uncertainty Analysis

- SAM is sufficiently fast to run multiple cases
 - Uncertainties include both precision (orientation) and accuracy
 - Mandatory to include uncertainties for:
 - Aerothermodynamic heating
 - Material response
 - Fragmentation processes
- Practical Usage
 - SAM has a Monte Carlo capability
 - Towards 100,000 6dof runs performed using ATS6 module in GOCE uncertainty analysis
 - Planned 1000 runs per "spacecraft oriented" configuration in optics demise TRP

Important Gaps

- Aerothermodynamic Heating to Complex Shapes
- Final Demise
- (High Temperature / High Performance) Material Data
- Fragmentation Phenomenology
- Quantitative Fragmentation Data
- Uncertainties Currently Large
 - Must be accounted for within analysis
 - Can only be done properly using correct phenomenology

Conclusions

- Towards a truly representative destructive re-entry model
 - Phenomenologically based
 - Appropriate material modelling, including insulators/ablators
 - Joint-based fragmentation
 - Verified heating and material models
 - Testing gives improved material response; fragmentation
- Designed for Uncertainty Analysis as Standard
 - 6DOF Monte Carlo runs easily achievable
 - Large sensitivity studies can be run to inform design
 - Uncertainties can be included for wide range of effects

