Sustainability of Drag-Augmentation Devices

Cleanspace Industrial Days 2016

K. D. Bunte, T. Sinn, A. Riemer, R. Hahn, P. Seefeldt, T. Spröwitz, M. Sznajder 27 May 2016

Overview

- Introduction
- Orbital Lifetime
- Collision Risk
- Aspects to be Considered
 - Impact flux
 - Impact Effects
- Summary and Conclusions

Introduction

- ESA's space debris mitigation requirements
 - ESA/ADMIN/IPOL(2014)2
 - ECSS-U-AS-10C, 2012
 - ISO 24113:2011
- LEO protected region
- 25 year rule
- Various possibilities to ensure compliance
 - electrical propulsion system
 - chemical propulsion systems
 - solar sails
 - tethers

27 May 2016

drag-augmentation devices

etamax

member of the ckc aroup

• Question:

What is the impact of drag augmentation devices on the space debris environment?

- 25 years rule shall reveal minimisation of the collision risk after the end of mission
- Collision risk: determined by the number of impact during the disposal phase
- 25 years with large area vs. longer decay with small area

27 May 2016

Orbital Lifetime

etamax member of the ckc group

• Simple equation (King-Hele)

$$T_L = \frac{H_P}{\sqrt{\mu \cdot a} \cdot \rho_P \cdot F \cdot B}$$

- H_n scale height
- gravitational constant of the Earth μ
- semi-major axis a
- atmospheric density (perigee) ρ_P

- wind factor F
- perigee radius r_P
- angular velocity W
- perigee velocity v_P
- inclination i

- ballistic parameter B
- drag coefficient C_D
- cross-section A
- mass т

- valid for near-circular orbits (e < 0.01)
- atmospheric drag is the main perturbing force
- Main dependencies
 - initial orbital altitude -> atmospheric density
 - ballistic parameter: cross-section and mass

Reference: King-Hele, D. G., Satellite Orbits in an Atmosphere: Theory and Applications, ISBN 0-216-92252-6, 1987

27 May 2016

Orbital Lifetime (Altitude vs. Time)

• ADEO case (25 m² membrane); analysis with STK

 Spacecraft remains in regions of high space debris flux for most of the orbital lifetime

27 May 2016

Number of Collisions

• Equation $N_C = F_{M/OD} \cdot A \cdot T_L$

 $F_{M/OD}$ impact flux, A exposed area, T_L orbital lifetime/exposure duration

• Combination of both equations (orbital lifetime in collision risk equation)

$$N_{C} = F_{M/OD} \cdot \mathbf{A} \cdot \frac{H_{P} \cdot m}{\sqrt{\mu \cdot a} \cdot \rho_{P} \cdot F \cdot c_{D} \cdot \mathbf{A}}$$

Result: collision risk is independent from the area
nor positive neither negative effect
valid for drag area = exposed area

Aspects to be Considered/Analysed

- Effective drag-area (cross-section)
 - attitude stabilisation, deviations from the nominal attitude
 - loss of drag area, e.g. as a consequence of impacts
- Collision area (exposed area)
 - impact flux accumulated over the mission duration (with/without drag augmentation)
 - flux signatures on the different parts of the exposed area
 - impact angle, impact velocity
- Cross-section vs. exposed area
 - example: plate, perpendicular to the velocity vector:
 - exposed area = 2 x cross-section (but small number of impacts on the rear side)
- Effects of impacting particles
 - suitable damage equations
 - effects of grazing impacts
 - identification of the critical particle diameter
 - impacts of large objects/catastrophic impacts
 - on the membrane and booms
 - on the spacecraft
 - debris cloud generated by an impact -> environmental effect
- Effects on the number of required collision avoidance manoeuvres

Impact Flux (1)

- Flux vs. particle diameter
 - MASTER-2009
 - 800 km SSO
 - large number of impacts of small particles to be expected
- Flux vs. altitude
 - highest spatial density in the 600 km to 1000 km altitude band

27 May 2016

Sustainability of Drag-Augn Cleanspace Industrial Days 2010, ESA/ESIEC

Impact Flux (2)

- Flux vs. time
 - will increase, mainly due to further collisions
 - mainly in LEO
- Simplified flux and "cratered" area estimation for ADEO

etanax

member of the ckc aroup

- affected area is small: < 0.1% of the membrane area
- but: crack propagation needs to be considered (detailed assessment ongoing)

Impact Effects (1)

- Membrane damage assessment
 - HVI tests
 - performed as part of the "Deployable Membrane" study at TU Munich
 - ca. 4 mm, 3.7 km/s, impact angle 0°
 - Damage equation (hole size equation)

$$D = \left\{ K_0 \cdot \left(\frac{t_s}{d_p}\right)^{\lambda} \cdot \rho_p^{\beta} \cdot v^{\gamma} \cdot (\cos \alpha)^{\xi} \cdot \rho_s^{\nu} + A \right\} \cdot d_p$$

 t_s foil thicknessvimpact velocity d_p particle diameter α impact angle ρ_p particle density ρ_s foil densityconstants $K_{0'}$ A and exponents are used to adaptthe equation to specific materials

Source: HTS, HPS

Impact Effects (2)

- Membrane damage assessment
 - Grazing impacts cause slit shaped damage
 - Crack propagation
 - tensile test of pre-damaged membrane material
 - derivation of material related parameters
 - correlation with FEM analyses
 - Objective
 - assessment of the membrane stability based on the damage estimation

Impact Effects (3)

- Boom damage assessment
 - HVI tests
 - at TU Munich
 - ca. 4 mm, 4.1 km/s, impact angle 0°
 - Failure and damage equations
 - adaptation of the parameters of existing double wall CFRP equations required
 - alternative: derivation of new equations
 - probably further testing necessary
 - Objectives
 - estimation of the damage
 - · assessment of the boom stability

Source: HPS

Summary and Conclusions

- Further detailed investigation required to answer the question raised
- Also required for other active or passive de-orbiting methods and for ADR methods
- Comparison of the sustainability of all proposed technologies to comply with the standards
- Comparison of the sustainability of all ADR technologies
 - Application of methods such as FTA, FMEA, etc.
 - Consideration of technical and environmental aspects
- The application of methods which are counterproductive from the environmental point of view cannot be justified!

27 May 2016

etamax space GmbH

Frankfurter Straße 3 d D-38122 Braunschweig Tel +49 (0)531.866688.0 Fax +49 (0)531.866688.99

www.etamax.de Email info@etamax.de

27 May 2016