

May 25, 2016

Development of Commodity for removal of expended elements using Electro-dynamic Tether

Re-entry technologies

•Additional dry mass Additional fuel mass

Solid propulsion module

Non restartable Liquid propulsion •Additional dry mass •Additional fuel mass

Re-startable liquid propulsion •Minimum dry mass Additional fuel mass

Electrodyamic tether Fundamentals

No battery, no propellant, passive process based on Thermodynamics principles

Keeping Earth Clean by Natural environment

Tether uses three main characteristics of Sun-Earth system:

- Earth magnetosphere, magnetic field. Induce voltaje and force
- Earth ionosphere (60-600 km and beyond), atmosphere is ionized by solar radiation (e- + H+ + O+). Create the current
- Gravity gradient. Maintain tether in local vertical attitude.

Types of electrodynamic tethers

Past Tether Missions

TSS-1R deploys from Shuttle, 1996

Name	Year	Orbit	Length	Agency	Commen
Gemini 11	1967	LEO	30m	NASA	Spin stabilized,0.15rpm
Gemini 12	1967	LEO	30m	NASA	Local Vertical, stable swi
H-9M-69	1980	Suborb	500m	NASA	Partial Deployment
S-520-2	1981	Suborb	500m	NASA/ISAS	Partial Deployment
Charge-1	1983	Suborb	500m	NASA/ISAS	Full Deployment
Charge-2	1984	Suborb	500m	NASA/ISAS	Full Deployment
Oedipus-A	1989	Suborb	958m	Canada/ NRC/NASA	Spin stabilized, 0.7rpm, B
Charge-2B	1992	Suborb	500m	NASA	Full Deployment
TSS-1	1992	LEO	260m	NASA/Italian SA	Partial Deployment, and reer in
SEDS-1	1993	LEO	20km	NASA	Full Deployment, swinging and cut
PMG	1993	LEO	500m	NASA	Upwards deployment
SEDS-2	1994	LEO	20km	NASA	Full deployment, local vertical stab
Oedipus-C	1995	Suborb	1km	Canadian NRC/NASA	Spin stabilized, 0.7rpm, B-aligned
TSS-1R	1996	LEO	19.6km	NASA/Italian SA	Almost full deployment, electric-and a second second
TiPS	1996	LEO	4km	NRO/NRL	Tether flying during 11 years
ATEx	1999	LEO	6km	NRL	Partial deployment
ProSEDS*	2003	LEO	15km	NASA	H/W manufactured but it did not fly
MAST	2007	LEO	1km	NASA	Deployment was cancelled
YES2	2007	LEO	32km	ESA	Full Deployment
T-REX	2010	Suborb	300m	JAXA	Full Deployment

SEDS-2 in orbit pictured from the ground in 1994

20 systems were built of which 19 flew in space, 11 successful

Credit to Tether applications Inc.

ESTEC, Clean Space Industrial Days

Electro dynamic Tether Deorbiting Unit. T-EDU

Tether performances. Comparison of technologies

See AIAA Proceedings May 2016.

Comparison of Technologies for De-orbiting Spacecraft From Low-Earth-Orbit at End of Mission by Dr. G. Sánchez-Arriaga , J. R. Sanmartín, E. C. Lorenzini

Electro-dynamic tether initial application target

Application objectives:

- Payload adaptors
- Last stages of launchers
- Short mission duration S/C in LEO above 500 kg mass

Host vehicle requirements (for IOD and first version of SS)

- Orbits below 1200 km altitude
- Deorbit within days after launch
- Payloads or stages with their own ACS to allow tether safe deployment

Number of Satellites (Total Accessible)									
Altitude	Mass								
Altitude	<500kg	500-1000kg	1000-1500kg	1500kg +					
<600km	44	6	7	1					
600 - 1250km	83	80	9	9					
1250 - 2000km	0	13	0	0					
International market between 2014 2022									

International market between 2014-2023 (ESA Clean sat presentation 06/05/2014)

Values validated with ESA tool DRAMA v2.0.4

ESTEC, Clean Space Industrial Days

SS mass ratio for bipropellant existing system to lower orbit to 500 km from a 800 km orbit is around 3% of S/C mass

SS mass ratio for bipropellant existing system to full deorbit from a 800 km orbit is around 8% of S/C mass

1000 kg S/C at 800 km requires 100 kg of propellant !

1000 kg S/C at 800 km requires a \approx 25 kg tether

Tether for deorbiting is best candidate

Tether technology roadmap for de-orbit

Conclusions

- BET is more efficient that other technologies in LEO for deorbit
- Prediction of LEO missions envisages a commercial opportunity for BETs
- Environmental friendly technology
- Combination with Design for Demise activities for application to most of missions
- Technology development is needed for specific product although implementation of existing elements with high TRL is possible
- Building a proto-flight deorbiting system is the next logical step

Thanks for your attention eduardo.urgoiti@sener.es

