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Deep (supervised) learning

- Deep representation is a composition of many function
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« Linear transformation and non-linear activation functions 7,
+ Weight sharing

+ Recurrent neural networks: across time steps

+ Convolutional neural networks: across spatial (or temporal) regions
+ Stochastic gradient descent (SGD)

+ loss-function, e.g., I(y) = ||y — y||?

+ objective is to minimize expected loss: £ = [, [I(y)]
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+ Powerful function approximation and representation learning

« adjust weights in direction of gradient: Aw, =

+ finds compact low-dimensional representation (features)

- State-of-the-art for image, text and audio



Reinforcement learning

+ General purpose framework for artificial intelligence
* Autonomous agent that interacts with its environments
Learning through interaction
+ Learns optimal behaviors
+ Improving over time through trial & error
+ Scaling reinforcement learning requires powerful representations

+ domains with high-dimensional state (or observation) spaces

+ continuous action spaces

Environment




Many flavours of reinforcement learning

model-based s~ T, r~ R — T,(s,a),R(s,a) — V(s) — m(s)

model-free
value-based s~T, r~R—= Q(s,a) — 7(s)

policy-based s~T,r~R— 7(s)

actor-critic s~T, r~R—= Q(s,a),n(s)
imitation learn. {(51:t7a1:t7’r1:t)i}?:1 — 7(s)
inverse RL {(Slzt’al:tvrlct)i}?:l — R(s,a) — V(s) — 7(s)

learning dynamic programming



Value-based reinforcement learning

+ Bellman expectation equation:

Q™(s,a) =E[ry + 770+ 77143 | 8 = a,0, = a

=L, ~ra,or Mo Q7 (8411,001) | Sy = a0, = a
+ Bellman optimality equation:
Q" (s,a) = Es,.. [Tt+1 + ’Yrélfii( Q" (sp4150001) | 8= 8,0, = a]
+ Value iteration algorithm:

Qis1(s,a) = [Esm |:rt+1 "‘7%13}( Qi(8¢41,a111) | 8y = 5,0, = a]
t+1

+ Transition model s, _; ~ T'(s,, a,) is unknown



Naive deep Q-learning

+ Q-learning update rule:

Q(s4,a;) < Q(s4,04) + (Tt+1 + 'ymng(sHl,a) — Q(s4, at))

+ (@ is represented by a (deep) neural network with weights w: Q(s, a, w)

+ Loss is the mean-squared TD-error:
2
L(w) =E |:(Tt+1 + 7y max Q(Sy41,a,w) — Q(s4, ay, w)) ]

+ Minimize loss with SGD: 24*)



Stability

Naive Q-learning with neural networks oscillates or diverges:

1. Datais non i.i.d!
« trajectories
« samples are correlated (generated by interaction)
2. Policy changes rapidly with slight changes to (-values
« policy may oscillate
3. Reward range is unknown
« gradients can be large
- instabilities during back-propagation



Deep Q-networks (DQN)

Deep Q-networks (DQN) address instabilities through:

+ Experience replay

+ store transitions (S,, Gy, Ty 1, Sy41)

+ sample random mini-batches

* removes correlation, restores i.i.d. property
+ Target network

+ second ( network

+ fixed parameters in target network

+ periodically update target network parameters
+ Reward clipping/normalization

+ clip rewards to r € [0, 1]

+ batch normalization



DQN in Atari

“End-to-end” learning:

« state: stack of 4 frames, raw pixels
« action: joystick commands (18 discrete actions)

+ reward: change in score

Convglution Convglulion Fully cgnnected Fully cgnnecled

image from *Human-level control through deep reinforcement learning® (Google Deepmind / Nature)
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image from *Human-level control through deep reinforcement learning® (Google Deepmind / Nature)
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Policy gradient for continuous actions

+ Value-based with continuous actions: arg max Q(-)isan
optimization problem in itself

« Represent policy directly by a deep network: 7 (s, 6)
+ Objective:
« discounted reward: J(0) = E [rto + Ty, T, ]

« episodic reward: J(6) = [E [ZT

t=to |t

+ Optimize with SGD



Policy gradient for continuous actions

Value-based with continuous actions: arg max,, Q(-)isan
optimization problem in itself

Represent policy directly by a deep network: 7 (s, 0)
Objective:
« discounted reward: J(0) = E [rto + Ty, T, ]

« episodic reward: J(6) = [E [ZT

t=to |t

Optimize with SGD

Problems:

relies on empirical return of a trajectory — high variance

introducing unbiased estimates — reduce variance

substracting a baseline (e.g., average over several MC rollouts)

weighting updates by an advantage instead of pure reward
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Actor-critic

» The gradient of the policy is the direction that most improves Q:
0J(60) 0Q7(s,a,w) o7 (s,0)

7 _FE
50 s Sa 50

+ Actor-critic methods use the value function as a baseline for policy gradients

+ Trade off between variance reduction of policy gradients with bias
introduction from value function methods

Value
Function

/

state — action

reward

—‘ Environment ‘—4
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Deep deterministic policy gradient (DDPG)

Deterministic policy gradient uses the critic as the loss function for actor
DDGP also addresses instabilities by:

+ Experience replay for actor and critic

* Target network to freeze parameters for (), periodically updated
“End-to-end” learning with continuous actions

- state: stack of 4 frames, raw pixels

+ action: continuous (up to 12-dimensional)

* reward: various objectives

:
N

image from *Continuous control with deep reinforcement learning* (Google Deepmind / ICRL)
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Asynchronous advantage actor critic (A3C)

+ Speedup through parallel computing
+ Parameters are read/updated asynchronously by multiple agents
+ Agents are situated in independent environments

- stabalizes gradients
« allows for more exploration
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Learning to imitate optimal control

+ Pre-compute (off-line) many optimal trajectories

+ Train a deep artificial neural architecture to learn the

optimal policy 7*(s) (or u*(x))

* Use the learned policy to drive the system in real-time
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Training

Millions of optimal state-action pairs

100 pairs per optimal trajectory

Optimal control profiles

+ Continuous control (quadratic control )
+ Bang-off-bang control, saturated control (time or mass optimal)

Stochastic gradient descent with mini-batches

Tested diverse architectures (depth & non-linearities)
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Evaluation

Success rate Distance to target Optimality
7 [m] v [m/s]
Multicopter [QC] 100.0% 0.014 0.027 98.18%
Multicopter [TOC] 100.0% 0.016 0.028 98.88%
Spacecraft [QC] 100.0% 0.29 0.044 99.60%
Spacecraft [MOC] 98.3% 2.90 0.073 99.28%
Rocket [QC] 99.0% 1.10 0.066 99.62%
Rocket [MOC] 95.0% 1.95 0.094 99.67%
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NOTE: landings are not ic, they only miss the pinpoint by more than a strictly defined tolerance.




Powerful generalization: initial state

Reaction-Wheel Spacecraft (MOC)
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Powerful generalization: after episode termination

« In MOC the target position is always reached with either maximum or
minimum thrust

* Hovering: u; = mg,uy =0

+ Never seen in training!
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Visual landing with CNNs

input convolution max-pooling convolution max-pooling fully connected

image credit (top left): Space X
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Learning to hover near small bodies

» Highly dynamic environments
» Elementary motion detectors
« Provide optical flow
» Reinforcement learning
« Evolutionary policy search
« LSPI
 Future directions
« Deep reinforcement learning
+ “end-to-end” learning

Spacecraft trajectory
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Discussion

« Powerful representations for powerful reinforcement learning
+ Learning by trail and error from interaction

+ advantage: general-purpose
« disadvantage: sample efficiency

« Sample efficiency can be addressed by imitation learning

+ e.g. with trajectories generated by optimal control methods

* supervised-learning in combination with importance sampling
(correcting for off-policy samples)

+ Guided policy search (GPS)

+ Trust region policy optimization (TRPO)

+ Deep representations allow for powerful reinforcement learning

« Interpretability remains a big challenge in deep (reinforcement) learning
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Thank you!

Daniel Hennes | daniel.hennes@gmail.com

Collaborators:

Dario Izzo (ESA | ACT)
Carlos Sanchez-Sanchez
Stefan Willi
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