
Deep Reinforcement Learning for Control

Daniel Hennes

24.11.2017

University Stuttgart - IPVS - Machine Learning & Robotics

1

Deep (supervised) learning

• Deep representation is a composition of many function

𝑥 ⟶
𝑤1

ℎ1 ⟶
𝑤2

ℎ2 ⟶
𝑤3

… ⟶
𝑤𝑛

ℎ𝑛 ⟶
𝑤𝑛+1

𝑦

• Linear transformation and non-linear activation functions ℎ𝑘
• Weight sharing

• Recurrent neural networks: across time steps
• Convolutional neural networks: across spatial (or temporal) regions

• Stochastic gradient descent (SGD)
• loss-function, e.g., 𝑙(𝑦) = ||𝑦∗ − 𝑦||2
• objective is to minimize expected loss: ℒ = 𝔼𝑥 [𝑙(𝑦)]
• adjust weights in direction of gradient: ∆𝑤𝑖 = −𝛼 𝛿𝑙(𝑦)

𝛿𝑤𝑖
• Powerful function approximation and representation learning

• finds compact low-dimensional representation (features)

• State-of-the-art for image, text and audio

2

Reinforcement learning

• General purpose framework for artificial intelligence
• Autonomous agent that interacts with its environments
Learning through interaction

• Learns optimal behaviors
• Improving over time through trial & error
• Scaling reinforcement learning requires powerful representations

• domains with high-dimensional state (or observation) spaces
• continuous action spaces

Agent

Environment

atrt

rt+1

st+1

st

3

Many flavours of reinforcement learning

model-based 𝑠 ∼ 𝑇 , 𝑟 ∼ 𝑅 → 𝑇𝑠′(𝑠, 𝑎), 𝑅(𝑠, 𝑎) → 𝑉 (𝑠) → 𝜋(𝑠)

model-free
value-based 𝑠 ∼ 𝑇 , 𝑟 ∼ 𝑅 → 𝑄(𝑠, 𝑎) → 𝜋(𝑠)
policy-based 𝑠 ∼ 𝑇 , 𝑟 ∼ 𝑅 → 𝜋(𝑠)
actor-critic 𝑠 ∼ 𝑇 , 𝑟 ∼ 𝑅 → 𝑄(𝑠, 𝑎), 𝜋(𝑠)

imitation learn. {(𝑠1∶𝑡, 𝑎1∶𝑡, 𝑟1∶𝑡)𝑖}𝑛
𝑖=1 → 𝜋(𝑠)

inverse RL {(𝑠1∶𝑡, 𝑎1∶𝑡, 𝑟1∶𝑡)𝑖}𝑛
𝑖=1 → 𝑅(𝑠, 𝑎) → 𝑉 (𝑠) → 𝜋(𝑠)

learning dynamic programming

4

Value-based reinforcement learning

• Bellman expectation equation:

𝑄𝜋(𝑠, 𝑎) = 𝔼 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 … | 𝑠𝑡 = 𝑎, 𝑎𝑡 = 𝑎]
= 𝔼𝑠𝑡+1∼𝑇 ,𝑎𝑡+1∼𝜋 [𝑟𝑡+1 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) | 𝑠𝑡 = 𝑎, 𝑎𝑡 = 𝑎]

• Bellman optimality equation:

𝑄∗(𝑠, 𝑎) = 𝔼𝑠𝑡+1
[𝑟𝑡+1 + 𝛾 max

𝑎𝑡+1
𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Value iteration algorithm:

𝑄𝑖+1(𝑠, 𝑎) = 𝔼𝑠𝑡+1
[𝑟𝑡+1 + 𝛾 max

𝑎𝑡+1
𝑄𝑖(𝑠𝑡+1, 𝑎𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Transition model 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡, 𝑎𝑡) is unknown

5

Naive deep Q-learning

• Q-learning update rule:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡))

• 𝑄 is represented by a (deep) neural network with weights 𝑤: 𝑄(𝑠, 𝑎, 𝑤)

• Loss is the mean-squared TD-error:

ℒ(𝑤) = 𝔼 [(𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎, 𝑤) − 𝑄(𝑠𝑡, 𝑎𝑡, 𝑤))
2
]

• Minimize loss with SGD: 𝛿𝑙(𝑤)
𝛿𝑤

6

Stability

Naive Q-learning with neural networks oscillates or diverges:

1. Data is non i.i.d!
• trajectories
• samples are correlated (generated by interaction)

2. Policy changes rapidly with slight changes to 𝑄-values
• policy may oscillate

3. Reward range is unknown
• gradients can be large
• instabilities during back-propagation

7

Deep Q-networks (DQN)

Deep Q-networks (DQN) address instabilities through:

• Experience replay
• store transitions ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1⟩
• sample random mini-batches
• removes correlation, restores i.i.d. property

• Target network
• second 𝑄 network
• fixed parameters in target network
• periodically update target network parameters

• Reward clipping/normalization
• clip rewards to 𝑟 ∈ [0, 1]
• batch normalization

8

DQN in Atari

“End-to-end” learning:

• state: stack of 4 frames, raw pixels
• action: joystick commands (18 discrete actions)
• reward: change in score

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

image from *Human-level control through deep reinforcement learning* (Google Deepmind / Nature) 9

DQN in Atari

image from *Human-level control through deep reinforcement learning* (Google Deepmind / Nature) 10

Policy gradient for continuous actions

• Value-based with continuous actions: arg max𝑎 𝑄(⋅) is an
optimization problem in itself

• Represent policy directly by a deep network: 𝜋(𝑠, 𝜃)

• Objective:

• discounted reward: 𝐽(𝜃) = 𝔼 [𝑟𝑡0 + 𝛾𝑟𝑡1 + 𝛾2𝑟𝑡2 …]
• episodic reward: 𝐽(𝜃) = 𝔼 [∑𝑇

𝑡=𝑡0
𝑟𝑡]

• Optimize with SGD

• Problems:
• relies on empirical return of a trajectory → high variance
• introducing unbiased estimates → reduce variance
• substracting a baseline (e.g., average over several MC rollouts)
• weighting updates by an advantage instead of pure reward

11

Policy gradient for continuous actions

• Value-based with continuous actions: arg max𝑎 𝑄(⋅) is an
optimization problem in itself

• Represent policy directly by a deep network: 𝜋(𝑠, 𝜃)

• Objective:

• discounted reward: 𝐽(𝜃) = 𝔼 [𝑟𝑡0 + 𝛾𝑟𝑡1 + 𝛾2𝑟𝑡2 …]
• episodic reward: 𝐽(𝜃) = 𝔼 [∑𝑇

𝑡=𝑡0
𝑟𝑡]

• Optimize with SGD

• Problems:
• relies on empirical return of a trajectory → high variance
• introducing unbiased estimates → reduce variance
• substracting a baseline (e.g., average over several MC rollouts)
• weighting updates by an advantage instead of pure reward

11

Actor-critic

• The gradient of the policy is the direction that most improves Q:

𝛿𝐽(𝜃)
𝛿𝜃 = 𝔼𝒮 [𝛿𝑄𝜋(𝑠, 𝑎, 𝑤)

𝛿𝑎
𝛿𝜋(𝑠, 𝜃)

𝛿𝜃]

• Actor-critic methods use the value function as a baseline for policy gradients

• Trade off between variance reduction of policy gradients with bias
introduction from value function methods

12

Deep deterministic policy gradient (DDPG)

Deterministic policy gradient uses the 𝑐𝑟𝑖𝑡𝑖𝑐 as the loss function for 𝑎𝑐𝑡𝑜𝑟

DDGP also addresses instabilities by:

• Experience replay for actor and critic
• Target network to freeze parameters for 𝑄, periodically updated

“End-to-end” learning with continuous actions

• state: stack of 4 frames, raw pixels
• action: continuous (up to 12-dimensional)
• reward: various objectives

image from *Continuous control with deep reinforcement learning* (Google Deepmind / ICRL)

13

Asynchronous advantage actor critic (A3C)

• Speedup through parallel computing

• Parameters are read/updated asynchronously by multiple agents

• Agents are situated in independent environments

• stabalizes gradients
• allows for more exploration

14

Learning to imitate optimal control

• Pre-compute (off-line) many optimal trajectories

• Train a deep artificial neural architecture to learn the
optimal policy 𝜋∗(𝑠) (or 𝑢∗(𝑥))

• Use the learned policy to drive the system in real-time

15

Training

• Millions of optimal state-action pairs
100 pairs per optimal trajectory

• Optimal control profiles

• Continuous control (quadratic control)
• Bang-off-bang control, saturated control (time or mass optimal)

• Stochastic gradient descent with mini-batches

• Tested diverse architectures (depth & non-linearities)

16

Evaluation

Success rate Distance to target Optimality
𝑟 [m] 𝑣 [m/s]

Multicopter [QC] 100.0% 0.014 0.027 98.18%
Multicopter [TOC] 100.0% 0.016 0.028 98.88%

Spacecraft [QC] 100.0% 0.29 0.044 99.60%
Spacecraft [MOC] 98.3% 2.90 0.073 99.28%

Rocket [QC] 99.0% 1.10 0.066 99.62%
Rocket [MOC] 95.0% 1.95 0.094 99.67%

0 150 300
x [m]

0

1000

2000

z
[m

]

0 30 60
t [s]

5

0

5

v x
 [m

/s
]

0 30 60
t [s]

0

30

60
v z

 [m
/s

]
0 30 60

t [s]

0.5

0.0

θ
[ra

d]

0 30 60
t [s]

10500

10200m
 [k

g]

0 30 60
t [s]

0

44

u
1
 [k

N
]

0 30 60
t [s]

0.0698

0.0000

0.0698

u
2
 [r

ad
/s

]

Optimal control DNN control

NOTE: unsuccessful landings are not catastrophic, they only miss the pinpoint by more than a strictly defined tolerance.

17

Powerful generalization: initial state

400 200 0 200 400
x [m]

0

1

2

3

4

z
[k

m
]

A1A

Simple Spacecraft (MOC)

A2

400 200 0 200 400
x [m]

0

1

2

3

4

z
[k

m
]

A1A

Reaction-Wheel Spacecraft (MOC)

A2

15 10 5 0 5 10 15
x [m]

0

10

20

30

z
[m

]

A1

A2

Quadrotor (QC)

A

1 0 1
x [m]

0.5

0.0

z
[m

]

Quadrotor (QC)

18

Powerful generalization: after episode termination

• In MOC the target position is always reached with either maximum or
minimum thrust

• Hovering: 𝑢1 = 𝑚𝑔, 𝑢2 = 0
• Never seen in training!

19

Visual landing with CNNs

convolution max-pooling convolution max-pooling input fully connected

image credit (top left): Space X

20

Learning to hover near small bodies

• Highly dynamic environments
• Elementary motion detectors

• Provide optical flow

• Reinforcement learning
• Evolutionary policy search
• LSPI

• Future directions
• Deep reinforcement learning
• “end-to-end” learning

21

Discussion

• Powerful representations for powerful reinforcement learning

• Learning by trail and error from interaction

• advantage: general-purpose
• disadvantage: sample efficiency

• Sample efficiency can be addressed by imitation learning

• e.g. with trajectories generated by optimal control methods
• supervised-learning in combination with importance sampling
(correcting for off-policy samples)

• Guided policy search (GPS)
• Trust region policy optimization (TRPO)

• Deep representations allow for powerful reinforcement learning

• Interpretability remains a big challenge in deep (reinforcement) learning

22

Thank you!

Daniel Hennes | daniel.hennes@gmail.com

Collaborators:

Dario Izzo (ESA | ACT)
Carlos Sanchez-Sanchez

Stefan Willi

23

