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Introduction

Example: design of a control system.

1. Choose a parametric form of the control law.

2. Implement a function which can evaluate the performance of

any control law.

3. Optimise this function with respect to the control law

parameters (using some optimisation tools).
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Introduction

More formally:

p: parameters of the control, to be chosen by us.

ℓ: local loss function

min
p

1

N

n∑

i=1

ℓ(xt, p)

subject to xt+1 = f(xt, p), (dynamics)

g(p) ≤ 0, (bounds on parameters)

h(p) = 0, (coupling between parameters)
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Introduction

Further examples:

• Supervised learning. (Linear regression, logistic regression,

support vector machines, neural networks, . . . )

• Supervised learning. (Expectation-maximisation, radial basis

function networks, topological data analysis, clustering, . . . )

• Trajectory optimisation.

• Material design, spacecraft design, . . .
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Introduction to Global Optimisation

In global optimisation, you want to find a global optimum to your

optimisation problem, in contrast to a local optimum.
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Introduction to Global Optimisation: Caveats

• Classical nonlinear methods only check if a candidate point

fulfils necessary conditions of first order (KKT-conditions).

Global optimisation aims for more, and is vastly more difficult.

• It is not always clear if one really needs a global optimum all

the time: these optima can be very sensitive to changes of

parameters —i. e they can vanish under slight perturbations of

the parameters. It is sometimes better to accept a local

minimum that is more stable.
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Introduction to Global Optimisation

• No free lunch theorem: No single algorithm will work well

on all problems.

• Curse of dimensionality: Solving problems with n variables

often costs 2n operations. (And if you use a stochastic method,

the probability of finding a solution shrinks quickly as n grows.)

• But: Problem-specific knowledge can help tremendously to

tailor algorithms.

• But, but: This makes algorithms hard to compare.
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What is/isn’t Deterministic Global Optimisation?

• What its not: an approach to generate high-accuracy

solutions. (Thats what local optimisation methods are for,

employed after a global optimisation step: WORHP, SNOPT,

IPOPT, etc.)

• What its not: an approach to generate some approximation

to a solution with some (unknown!) probability of correctness.

(Thats what stochastic algorithms do.)
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What is/isn’t Deterministic Global Optimisation?

• What it is: an approach that provides mathematically

rigorous bounds on the global optimum, i. e.

3.753 ≤ x1 ≤ 3.755, 2.161 ≤ x2 ≤ 2.167, . . .

• What it is: an approach that provides mathematically

rigorous bounds on where global optima are not to be found!

• Can handle equality constraints and inequality constraints as

well.

• Can handle integer/binary and general continuous variables.

• Can handle multiobjective problems.
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Branch-and-Bound (B&B)

Most efficient deterministic global optimisation algorithms use a

branch-and-bound approach.

Branch-and-bound algorithms for solving general global problems

are not fast (i.e. polynomial-time) in the worst case.

However, if correctly implemented, they can perform very well in

practice for medium-sized problems.
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Branch-and-bound

Branch: decompose the design space into two parts or more.

Bounds: find bounds on the optimal solution of smaller problems.
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Branch-and-bound

Refinement: employ this process recursively on remaining problems.

Problems considered become smaller and smaller in search space.
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Branch-and-bound

The overall process is stored in a tree-like structure. Establishing

that a subproblem cannot lead to a global optimum means pruning

the growth of the tree.
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Branch-and-bound

• This search tree can grow exponentially in size —needs good

bounds for pruning!

• Branch & Bound is sometimes referred to as the ”prayer

algorithm”: start it and pray that you don’t run out of

memory!

• Typical failure mode in practice: memory. Global optimum

found, but not all remaining branches of the tree pruned.
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Bounding

Let S be a region of the design space considered in one the

subproblems.

Let f be the objective function.

We need to find good bounds B with

min
x∈S

f(x) ≥ B.

If B is large, we can prune the subproblem over S.

Needs advanced mathematical techniques , because

• Low-quality bounds mean we don’t know that we can prune.

• We don’t want to solve minx∈S f(x). Too expensive!
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Bounding

Find good bounds quickly . Approaches:

• Relaxation

• Convexification

• Outer Approximation

• DC Programming

• Lipschitz Optimisation

• Interval Arithmetic

• Duality

• Facets & special cuts

• . . .

Which is the right one for your specific problem?
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Problem Types, Codes, Problem Sizes

What problems can we solve nowadays?

problem type some codes size [vars]

Local optima only WORHP, SNOPT, IPOPT ∼ 10, 000, 000

mixed-integer linear/ CPLEX, Gurobi, ∼ 100, 000

quadratic/conic/SDP XPress, Mosek

mixed-integer αECP, Bonmin, ∼ 10, 000

convex nonlinear DICOPT, MINLPBB

mixed-integer BARON, KNITRO, ∼ 1, 000

general nonlinear Couenne, Lindo

Caveats: indicative results as in ’orders of magnitude’ only. 2-3

hours computation time on standard desktop. Generic problem

libraries. YMMV. Solver list incomplete.
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Deterministic Global Optimisation: Conclusions

• Problems with ∼ 1, 000 variables reliably solved by off-the-shelf

software.

• Still orders of magnitude behind linear/quadratic optimisation.

• Orders of magnitude behind local optimisation: the curse of

dimensionality holds. No hope to break it. (Same for stochastic

methods.)

• But: problem structures occuring in control and space

engineering largely unexplored.

• Large scope for further developments.

• For further details, see report by J. Fliege, W. Coutinho,

D. Wassel: Assessment of Global Optimisation Methods for

Space Engineering (ESA PO 5401001690)
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