Space Missions Model-Based Control vs. Intelligent Control

Dr.-Ing. Johann Bals Institute of System Dynamics and Control DLR - German Aerospace Center Oberpfaffenhofen, Germany

1st International Round Table on Intelligent Control for Space Missions

ESTEC , Noordwijk, NL 24 Nov 2017

DLR

DLR System Dynamics and Control

Model-Based Control vs. Intelligent Control

- Model based control synthesis: Models are used for synthesis of control laws
 - LQG, Hinfinity, ...
- Embedded model control: Model of the system to be controlled is directly incorporated into the feedforward or feedback controller
 - Model Predictive Control
 - Dynamic Inversion / Feedback Linearization
 - Inverse Model Feedforward Control

Intelligent Control:

- Neural Networks control
- Bayesian control
- Fuzzy Logic control
- Expert Systems and Artificial Intelligence
- Genetic and Evolutionary control

Model based control design process:

- Use of modeling and simulation for performance assessment, robustness analysis and parameter tuning of control algorithms
- Automatic code generation and qualification

System Dynamics Modelling with Modelica

- Physical modelling and simulation of complex multi-domain systems 4 @ 4 @
- For design, optimisation, control, verification, virtual testing
- Open standard developed by the Modelica Association
- Chair RMC-SR

Inverse Models with Modelica/Dymola

Inverse plant model computes desired actuator and desired measurement signals based on non-linear plant model.

Generating inverse models with Modelica

- An inverse model of the DAE is constructed by exchanging the meaning of variables:
- A subset of the input vector u, is treated no longer as known but as unknown, and previously unknown variables from the vectors x and/or y are treated as known inputs. Inverse models are also DAEs in the form $0 = f(\dot{x}, x, y, u)$
- The result is still a DAE which can be handled with the same methods
- Allows to generate two degree of freedom controller for non-linear plant model

Inverse Models with Modelica/Dymola

Generating inverse models with Modelica

- An inverse model of the DAE is constructed by exchanging the meaning of variables:
- A subset of the input vector u, is treated no longer as known but as unknown, and previously unknown variables from the vectors x and/or y are treated as known inputs. Inverse models are also DAEs in the form $0 = f(\dot{x}, x, y, u)$
- The result is still a DAE which can be handled with the same methods
- Allows to generate two degree of freedom controller for non-linear plant model

DLR.de · Chart 8

Advanced Methods and Tools for Robust Control Design and Analysis

Challenges

- Robust stability for time varying parameters
- Low complexity
 uncertainty modelling

Research Topics

- Efficient toolchains
- Application for highly non-linear and uncertain systems

	Non-linear Model	LPV
	Parametric Approximation $\left[\frac{\dot{x}}{y}\right] = \left[\begin{array}{c c} A(p) & B(p) \\ \hline C(p) & D(p) \end{array}\right] \left[\frac{x}{u}\right]$	
n	Analysis- and Design-Model	<u>C</u>

- a) Common design approach with gain scheduling \rightarrow Local stability only
- b) Interpolation between linear time-varying controllers
 → Scheduling between controller is critical
- c) Linear Parameter-Varying control (LPV)
 - \rightarrow Guaranteed stability for the whole envelope

Further Core Areas in Model-Based Control

- Robust Fault-detection and -Isolation
 - Actuators
 - Sensors
 - Combining signal and model based methods
- Fault Tolerant Control
 - Prediction and flight envelope protections
 - Robust control
- Health Monitoring
- Inverse Models for Path-Planning

Controller Reconfiguration based on FDI information

Indication of safe flight envelope in the Primary Flight Display

Early Detection of System Degradation

European Research Projects (ITEA/BMBF)

EMPHYSIS 2017 – 2020, 15 Mill. Euro

Organized by Bosch, DLR, and others. Nonlinear Models in ECU production code (FMI for embedded systems)

- OEMs + Tier1 suppliers (use cases)
- Vendors of simulation tools (Dymola, SimulationX, ...)
- Vendors of ECU tools (TargetLink, ASCET, ...)
- Research institutes (DLR, ...)

Optimization as Design Tool

Applications:

- Robust Control Design
- Parameter ID
- System Design
- Design Verification
- Optimal feedforward contr.
- Real-Time Optimization

Techniques:

- Multi-objective-Optimization
- Multi-Case-Optimization
- Worst-Case-Optimization
- Pareto-Front Search
- Optimal Path-Planning
- using inverse models

Multi-Objective Optimization: Criteria in parallel Coordinates

Inverse Model

Tools:

- Matlab: MOPS
- Multi-Phase Optimal Path Planning: trajOpt
- For Modelica: Optimization Library in Catia/Dymola

Specialties:

- Advanced Numeric Algorithms
- Multi-Shooting Algorithms
- FMI-Connection
- Monte-Carlo-Analysis
- Parallel Computing
- User-friendly

Optimization as Design Tool

Applications:

- Robust Control Design
- Parameter ID
- System Design
- Design Verification
- Optimal feedforward contr.
- **Real-Time Optimization**

Techniques:

- Multi-objective-Optimization
- Multi-Case-Optimization
- Worst-Case-Optimization
- Pareto-Front Search
- Optimal Path-Planning
- using inverse models

Multi-Objective Optimization: Criteria in parallel Coordinates

Tools:

- Matlab: MOPS
- Multi-Phase Optimal Path Planning: trajOpt
- For Modelica: Optimization Library in Catia/Dymola

Specialties:

- Advanced Numeric Algorithms
- Multi-Shooting Algorithms
- FMI-Connection

- Monte-Carlo-Analysis
- Parallel Computing
- User-friendly

Object-oriented Modeling with Modelica

- Modelica SpaceSystems & Environment Library
 - Modeling of environment and orbit
 - Actuator and sensor models
- Modelica Robots & RobotDynamics Library
 - Robot models
 - Kinematic & Dynamic
- Supporting Modelica Libraries
 - Multi-body, FlexibleBodies, Visualization, Optimization

Visualization

Optimizaiton

Flexible bodies

DLR.de • Chart 16 Reiner, 2016

Overview of the combined satellite and robot arm control

Model-Based Rover Controls Example: Model-Predictive Control

- Goal: Optimal control of the wheels with respect to robust locomotion and energy consumption
- Method: MPC with rover dynamics and simplified terramechanics models
- Evaluation: Within the EGP rover in simulation and Exomars
 BB2 in the DLR planetary exploration lab

Control Architecture of ROboMObil

Vehicle Level Extended Vehicle Dynamics Control (VDC 3.x) - 1

- Execution of motion demands in hierarchical controller structure
- Exploitation of the full potential of the wheel robot dynamics bandwidth for active driving stabilization through optimization based methods (2-DoF Q-Loop Control & Control Allocation)
- Optimization of energy recuperation also during wheel slip control and in demanding handling situations through robust MPC approaches (Guaranteed reachability of the control variable trough truncation of a control variable reserve)

Feedforward (FF) control **DOB-Beta** Inverse relies on the inversion of B-Model Q_{β} the Single Track Model **Cascade Allocation** Filtering δ_i β^* $u_{\beta,FF}$ ROMO Inverse and Allocation of Vehicle Saturation Virtual Controls Wheel Slip + Model **Torque Blending** T_{Fj} (β, **ψ**) T_{Ei} MODELICA Inverse Ŵ $\dot{\psi}$ Model O_w Modelica model inversion **DOB-YawRate**

To facilitate the distribution of the actuation effort, a two-step **cascade allocation** process, was developed.

Feedback (FB) control of the vehicle's yaw-rate and side-slip based on the disturbance observer (DOB) principle

Vehicle Level Extended Vehicle Dynamics Control (VDC 3.x) - 2

- Execution of motion demands in hierarchical controller structure
- Exploitation of the full potential of the wheel robot dynamics bandwidth for active driving stabilization through optimization based methods (2-DoF Q-Loop Control & Control Allocation)
- Optimization of energy recuperation also during wheel slip control and in demanding handling situations through robust MPC approaches (Guaranteed reachability of the control variable trough truncation of a control variable reserve)

Reference torgue and wheel slip A1 $\boldsymbol{\lambda} = \begin{bmatrix} \lambda_l \\ \lambda_r \end{bmatrix}$ **ERA** $\boldsymbol{\lambda}^* = \begin{bmatrix} \lambda_l \\ \lambda_r \end{bmatrix}$ x_l^M MPC \ $T^* = \begin{bmatrix} T_l \\ T_r \end{bmatrix}$ u^B T^B EHB u_p χ^B Static Allocation **ERA** Q **Control Mode** x_r^M Switching T $\boldsymbol{\lambda} = \begin{bmatrix} \lambda_l \\ \lambda_r \end{bmatrix}$ T* 1* MODELICA Control mode switching through weighting DLR Modelica toolbox for robust MPC

Minimization of the cost function with consideration of system dynamics

Actuator Level Vertical Dynamics

- Manipulation of the wheel loads and body movement for vehicles like ROMO with high unsprung masses
- Robust LPV control methods with high bandwidth and inverse semiactive damper model

Application Level Reactive Obstacle Avoidance

- Calculation based on two consecutive images from a monocular camera.
- Detection of collisions with static and dynamic obstacles.
- Direct motion correction derived from velocities in the image space without intermediate transformation in Cartesian coordinates

GNC: Model-Based vs. Intelligent Control

Guidance

- Optimal guidance and optimization
 - Direct and Indirect methods
- guidance and motion plans with intelligent control?
 - Example: soft landing on the moon

Navigation

- · Potential for intelligent control in the sense of
 - Vision-based navigation
 - ...

Control

- Model-Based control
- First principles => Equations of motion => Physics
- Feedforward (model inversion, approx. inverse models)
- Feedback (LPV, robust control, loop shaping, PID, mu)

Possible round table questions

- How could model-based and intelligent control be utilized in a complementary or combined way for future space missions?
- Design process for model-based vs. intelligent control?
 - Certification Requirements
 - Safety Assessments
 - Validation & Verification

