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DLR System Dynamics and Control

Fields of Application

Space Aeronautics Ground Vehicles Tech-Transfer
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Model-Based Control vs. Intelligent Control

* Model based control synthesis: Models are

used for synthesis of control laws
* LQG, Hinfinity, ...

« Embedded model control: Model of the system
to be controlled is directly incorporated into the
feedforward or feedback controller

* Model Predictive Control
« Dynamic Inversion / Feedback Linearization
* Inverse Model Feedforward Control

Intelligent Control:

* Neural Networks control

« Bayesian control

* Fuzzy Logic control

» Expert Systems and Artificial Intelligence
» Genetic and Evolutionary control

Model based control design process:

» Use of modeling and simulation for
performance assessment, robustness analysis
and parameter tuning of control algorithms

» Automatic code generation and qualification

i DLR
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System Dynamics Modelling with Modelica

Vi

MOoDELICA

« Physical modelling and simulation of complex multi-domain systems {+ @
 For design, optimisation, control, verification, virtual testing

» Open standard developed by the Modelica Association
» Chair RMC-SR

&
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Example: Power Train Library :_E_%

i DLR




Inverse Models with Modelica/Dymola
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Inverse plant model computes desired actuator and desired
measurement signals based on non-linear plant model.

Generating inverse models with Modelica
- An inverse model of the DAE is constructed by exchanging the meaning of variables:

« A subset of the input vector u, is treated no longer as known but as unknown,
and previously unknown variables from the vectors x and/or y are treated as known inputs.

Inverse models are also DAEs in the form 0 = f (X, X,y,u)
« The result is still a DAE which can be handled with the same methods
« Allows to generate two degree of freedom controller for non-linear plant model

i DLR
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Inverse Models with Modelica/Dymola

|
. controller |
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Generating inverse models with Modelica
- An inverse model of the DAE is constructed by exchanging the meaning of variables:

« A subset of the input vector u, is treated no longer as known but as unknown,
and previously unknown variables from the vectors x and/or y are treated as known inputs.

Inverse models are also DAEs in the form 0 = f (X, X,y,u)
« The result is still a DAE which can be handled with the same methods
« Allows to generate two degree of freedom controller for non-linear plant model

i DLR
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Advanced Methods and Tools for Robust Control Design and Analysis

Challenges

* Robust stability for time
varying parameters

* Low complexity
uncertainty modelling

Research Topics

 Efficient toolchains

» Application for highly .
non-linear and uncertain
systems

( a) Common design approach with gain scheduling
— Local stability only

b) Interpolation between linear time-varying controllers
— Scheduling between controller is critical

c) Linear Parameter-Varying control (LPV)

\_ — Guaranteed stability for the whole envelope

i DLR
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Further Core Areas in Model-Based Control

Robust Fault-detection and -Isolation
» Actuators
» Sensors
« Combining signal and model based methods

Controller Reconfiguration based
on FDI information

Fault Tolerant Control
* Prediction and flight envelope protections
* Robust control

Indication of safe flight envelope in the
Primary Flight Display

Health Monitoring q’o N
__lj ,.3'9
1l

Inverses Mode

Early Detection of System Degradation

ear

- i Pos. | =
Inverse Models for Path Planning > L=, g Automatic generation of inverse models:
73

Input: Positions
i DLR

Output: Forces and Moments
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European Research Projects (ITEA/BMBF)

MODELISAR 2008 — 2011, 27 Mill. Euro \
Organized by Daimler, DLR, and others.

In 2017: supported by > 100 tools

EMPHYSIS 2017 - 2020, 15 Mill. Euro ) u%

FMI-Standard for model exchange and co-simulation .trn_i /

- Organized by Bosch, DLR, and others.
Nonlinear Models in ECU production code m
. : . (FMI for embedded systems)
Engine Gearbox Thermal Automated Chassis components, i i
with ECU with ECU systems cargo door roadway, ECU (e.g. ESP) * OEMS + Tlerl suppllers (use cases)

, N * Vendors of simulation tools (Dymola, SimulationX, ...)
\ﬁﬁFunctlona] Mockup Interface for Model Exchange and Co- Slmu]aiu;ni: / ¢ Vendors of ECU tools (Ta rgetLink’ ASCET, )
courtesy Daimler e Research institutes (DLR, ...)

MODRIO 2012 — 2016, 22 Mill. Euro \
Organized by EDF, DLR and others.
Nonlmear models for reqwrements and onllne operatlons

courtesy Bosch

. —

== courtesy ABB

Q2017 by ABB > 75 % of Germanies power productlon (5000 MW)/

are generated with Modelica/FMI based online optimization
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Optimization as Design Tool

&pplications: \

» Robust Control Design

« Parameter ID

» System Design

 Design Verification

» Optimal feedforward contr.
kReaI-Time Optimization )

ﬁechniques: \

« Multi-objective-Optimization
* Multi-Case-Optimization

» Worst-Case-Optimization

» Pareto-Front Search

« Optimal Path-Planning

Multi-Objective Optimization:
Criteria in parallel Coordinates

e

(Tools: \

+ Matlab: MOPS

» Multi-Phase Optimal Path Planning:
trajOpt

* For Modelica: Optimization Library in

kusing inverse models

i DLR

Inverse Model
| gear
Pos. -
—_ Ige7
gear
Mom. | &=
@ gear
I 2

Catia/Dymola
N Y
(Specialties: \

* Advanced Numeric Algorithms
* Multi-Shooting Algorithms

* FMI-Connection thli
* Monte-Carlo-Analysis

« Parallel Computing

k User-friendly /
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Optimization as Design Tool

~

Gpplications:
» Robust Control Design
« Parameter ID
» System Design
 Design Verification
» Optimal feedforward contr.

kReaI-Time Optimization )

ﬁechniques: \

« Multi-objective-Optimization
* Multi-Case-Optimization

» Worst-Case-Optimization

» Pareto-Front Search

« Optimal Path-Planning

Multi-Objective Optimization:
Criteria in parallel Coordinates

Optimization Results

Anti-Optimization
of system parameters

Optimization of
Controller Gains

. using inverse models

i DLR

Worst-Case Search
Worst Cases

Design

(Tools: \

* Matlab; MOPS

» Multi-Phase Optimal Path Planning:
trajOpt
* For Modelica: Optimization Library in

\ Catia/Dymola )
\

/Specialties:
* Advanced Numeric Algorithms
» Multi-Shooting Algorithms
* FMI-Connection thli
* Monte-Carlo-Analysis
« Parallel Computing

k User-friendly
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Model-Based Control
Design Process

>

Requirement Analysis > Validation

/772

MODELICA

Parameter-ID

- Requirements Library
- Funktion-model

System Architecture

Integratlon

Submodule Design Submodule Tests
'~ MOPS Assessment:
MOPS Entwurfsoptimierung ,’Q[ = - Worst-Case Search

- Monte-Carlo Analysis

S/W H/W Implementation ‘f

H / : 2

FU NCTIONAL

o = MODELICA

I' I Il FUNCTIONAL H
INTERFACE -

INT ERFACE




Target rotation [deg/s]
A

ESA Active Debris Removal Scenario

Matthias J. Reiner, DLR
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7

. . . . . MODELICA
Object-oriented Modeling with Modelica

=  Visualization

» Modelica SpaceSystems & Environment Library
* Modeling of environment and orbit
 Actuator and sensor models

* Modelica Robots & RobotDynamics Library
* Robot models
* Kinematic & Dynamic -

» Supporting Modelica Libraries
* Multi-body, FIexibIeBodies, Visualization, Optimization
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Overview of the combined satellite and robot arm control

Forward 7
Kinematics (; ;
Motor ; .
Controller > Robot —'—) Joint Angle Sensors
v
+ . 1
Traiect Feed-Forward Quaterni Combined v
—> ;Iajec — Controller Cua :rr;llon Satellite & Robot ) bl e (Gl
anning (Inverse Dynamics) ontrofier Controller e (LIDAR & Optical)
f T
i Force Allocation
| . ) ; 9 (CLS) & Thruster P> Satellite = IMU & Star Tracker
nverse Kinematics i PWPF Modulator b
CLS-Optimization
Kalman Filter
Estimation
Trajectory planning and feed- forward  Combined control of satellite and robot \_\Satelllte with robotic manipulator Sensors fand data
control and actuators fusion

# Cesa
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Model-Based Rover Controls
Example: Model-Predictive Control

— Goal: Optimal control of the wheels with respect to robust
locomotion and energy consumption

— Method: MPC with rover dynamics and simplified
terramechanics models

— Evaluation: Within the EGP rover in simulation and Exomars
BB2 in the DLR planetary exploration lab
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Control Architecture of ROboMODbil

Automated Driving

Overall System Telepresence

Driver Demand (Sidestick)

Application
Layer

Vehicle
Dynamics
Control

i DLR
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Vehicle Level
Extended Vehicle Dynamics Control (VDC 3.x) - 1

Feedforward (FF) control
relies on the inversion of
the Single Track Model

* Execution of motion demands in hierarchical
controller structure

« Exploitation of the full potential of the
wheel robot dynamics bandwidth for
active driving stabilization through
optimization based methods (2-DoF
Q-Loop Control & Control Allocation) Wiy

)
ﬁm* Filtering [,f‘

and
Saturation

Inverse
Vehicle
Model

(27

O
}

/ Virtual Controls
a% uy

Feedback (FB) control of the vehicle's
yaw-rate and side-slip based on the
disturbance observer (DOB) principle

 DOB-Beta K
i Inverse
[Model

H , h
Cascade Allocation
5
i Allocation of

Wheel Slip +
Torque Blending

7

MODELIC

Modelica model inversion

i DLR

Inverse
1 Model

 DOB-YawRate

To facilitate the distribution of the
actuation effort, a two-step cascade
allocation process, was developed.
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Vehicle Level

Minimization of the cost function with

Extended Vehicle Dynamics Control (VDC 3.x) - 2 consideration of system dynamics
. : — : /
« Execution of motion demands in hierarchical gieference torque and wheel
controller structure P
\ A: Al
v =[] i ERA
- e r
. mpc ¥ L% i
T — [Tl] —
T,
. EHB
Static up """"" B
i i i I o k :

» Optimization of energy recuperation also —J v : ERA
during wheel slip control and in [ Control Mode — M
demanding handling situations through Switching
robust MPC approaches (Guaranteed L
reachability of the control variable T*) las
trough truncation of a control variable > m
reserve) Control mode switching through MODELICA

weighting DLR Modelica toolbox for robust MPC

v

i DLR
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Actuator Level
Vertical Dynamics

» Manipulation of the wheel loads and
body movement for vehicles like
ROMO with high unsprung masses

» Robust LPV control methods with
high bandwidth and inverse semi-
active damper model
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Application Level
Reactive Obstacle Avoidance

» Calculation based on two consecutive
images from a monocular camera.

» Detection of collisions with static and
dynamic obstacles.

* Direct motion correction derived from
velocities in the image space without
intermediate transformation in
Cartesian coordinates

i DLR
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(" )

Intelligent
Model- based
Guidance

« Optimal guidance and optimization /§?Y

(e Ty
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GNC: Model-Based vs. Intelligent Control

* Direct and Indirect methods

 guidance and motion plans with intelligent control?
« Example: soft landing on the moon

Guidance

|

i

Navigation §
 Potential for intelligent control in the sense of ~

* Vision-based navigation

Navigation

Control

* Model-Based control

* First principles => Equations of motion => Physics

» Feedforward (model inversion, approx. inverse models)
» Feedback (LPV, robust control, loop shaping, PID, mu)

i DLR

Control
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Possible round table questions

 How could model-based and intelligent control be utilized in a
complementary or combined way for future space missions?

* Design process for model-based vs. intelligent control?
* Certification Requirements
» Safety Assessments
 Validation & Verification

i DLR




