FPGA acceleration of computer
vision and optimization for
European space applications

G. Lentaris, (glentaris@microlab.ntua.gr)

K. Maragos,

J. Stamoulias,

D. Diamantopoulos,

K. Siozios, M. Lourakis,

D. Soudris, X. Zabulis, M. Aviles Rodrigalvarez

ADRID, SPAIN

ComputerVision in Space

rover position
(localization)

ERRRRRRPRIN R EREEEITETITERNNL A 55

............ e R e ERRREE 50

T T /4 S . L s
— S | S — — — o
— — 5\ — — — -
| _ | _ | *

=
25

ESA ExoMars (2018)

Computer Vision, the Challenge

high complexity, especially to get high accuracy
LEON-FT has relatively small processing power

slow execution, impractical for advanced algorithms
» 1, hours for mapping on 150MIPS (4Mpixel, 300 depths)
»1 minute for localization on 150MIPS (robust, error < 2%)

ESA goal: only 20 sec and 1 sec, respectively
»looking for speed-up factors 10x to 1000x

proposed solution (SPARTAN/SEXTANT): FPGA

develop & accelerate & compare various algorithms
very promising results, met ESA specs [SEFUW 2014]

with Space Representative HW

COMPASS project (ESA)
optimize best HW/SW algorithm of SPARTAN/SEXTANT

target European space HW, consider multi-FPGA

* CPU: LEON3+ RTEMS (scale time to 150 MIPS)

* FPGA: BRAVE (use HAPS-g4, limit the FPGA resources)
v" delivered highly optimized & proof-of-concept designs

_ June January
April 2014 COMPASS 2016
2011 SPARTAN/SEXTANT e e <=

w . w (optimize best algorithm,
(imp|ement various May partition to mUltl'FPGA, use

CV algorithms on HW/SW) 2014 space representative HW)

LOCALIZATION:

image 1
R e

R B yoa. L
= g6 111 1%

4. Filter outlier matches
5. Motion Estimation

MAPPING:
brute-force examine 300 nypothetica cam

& depth planes

depth planes: SpaceSweep__~"

N L

sgadaase |

1. Feature Detection: Harris (x2) Sleeiil.

2. Feature Description: SIFT’(N \
3. I\/Iatching:xz-distance'(EN - '

UiP

NIE

histogram
of gradients

4
N

oot# aueyd yadep v

e C iR

COMPASS: HW/SW Partitioning

partitioning & co-design based on methodology
profile on LEON3 (time, memory, comm., arithmetic)
select kernels, develop VHDL by hand, optimize

LOCALIZATION

collect data . Filter | egomotion @ 0
~ (refine?) —<|‘ Outliers | | abs. orient. g (?
SIFT

Right Image
reyscale pixels
e
v

{/ Left Image
greyscale pixels

: 82-99% of total
] DS:JZ:(Zr ___) Descriptor _M (COmpUtatiE)nts Q?GP
MAPPING

99.9% FPGA (except a final floating-point transform)

" i

COMPASS: Architecture Overview‘

Target low-cost implementations (on FPGA)

especially w.r.t. memory: bottleneck for CV on FPGA
= resource reuse: decompose input data, process successively

Target sufficient speed-up (for ESA specs)
pipelining on pixel-basis & systolic architectures
= burst read of image, transform on-the-fly (2 datum/cycle)

parallel memories & parallel processing elements
= support parallel calculation of arithmetic formulas

Target configurability (tuning, adaptation)
parametric VHDL: data size, accuracy, parallelization,

COMPASS: Extra Optimizations

Target even lower cost implementations

customize algorithm exactly for the ESA scenario

= discard functionality that is rarely/never used (cost on HW!)
= word-length optimization, adapt to datasets & rover setup

share resources among algorithms (merge in 1 unit)

= more tight collaboration among HW modules/developers
= sacrifice generality and ease of development/debugging

design space exploration & platform customization

= exploit parametric VHDL, compromise cost/accuracy
= adapt to underlying FPGA platform (e.g., use SLICEM)

12 optimizations on FPGA, 2 major on CPU
= g more implemented, tested, rejected due to low accuracy

COMPASS: Optimization Results

Initial FPGA Cost: almost two Virtex6 VLX240t

mapping (14%slices,57%mem) + localiz. (57%slices, 78% mem)

Total Optimization:
LUTs: -25%
DFFs: -35%
DSPs: -461%
RAM: -51%
Time: -41% (HW), -90% (SW)

Fit in a Single Space-Grade FPGA

consequently, entire design fitted in Xilinx-5QV !

Mapping & Localization & Ethernet (or Spacewire)
utilization: 63% LUTs, 51% DFF, 42% DSP, 98% RAMB

design meets initial ESA specs, no compromise
localization: 1-2 fps, 1.7% error (512x384 images, 100m paths)
mapping: 17.4 sec, 2cm error (1120x1120x3 images, 4m depth)

150 me‘an(synthetic) | [" "
synthO(seq04) y: s ol s S
1.6 | —synth1(seq06) / e .
€ 1.4{L——synth2(seq10) — // 7 ”}A o
51 - ; 3
e i
//,//,,C:%;M’/accumulated error < 2% 97% coverage, 7/mm RMS error,
0 600 800 1000 1200 1400 1 3.6% mistakes (>2cm error)

00 800 1000 120
distance (frames), 100m

Feasible with European HW

BRAVE (vs. Virtex-5QV): similar logic, half memory
cannot fit entire COMPASS VHDL

solutiona: dynamic reconfiguration
e.g., like (or during) memory scrubbing, interchange
between mapping & localization (every 1-2 minutes)
use 1 big-BRAVE, need further study on actual device

solution2: multi-FPGA
assume 2 or 3, medium- or hypothetical-big-, BRAVEs

perform HW/HW partitioning and sync optimization

platform: HAPS-54 (4 xc5vIx330)
65nm (as BRAVE), bigger size
limit utilization, emulate BRAVE

best partitioning approach: semi-automatic

= manually: select partitions, map FPGAs, refine connections
= auto: evaluate cost, VHDL wrappers, pin assignment (LOCs)

high-speed sync: improve results in progressive steps
= regarding clock skew, 1/O registers, platform characteristics

COMPASS: multi-FPGA Results

2 proof-of-concept demos (more studied/tested)

equivalent to single-FPGA (accuracy + speed)
triple-FPGA: 1 big-BRAVE + 2 medium-BRAVE
double-FPGA: 2 big-BRAVE

B
mappmg maxmap

50% 54% ~99% ©

17% 5% ~99% Iocahzat:on matchSIFT

% 0% 2% localization
75 99 9 (-matchSIFT) Iocahzat:on cornerRAM
(-cornerRAM) (
9% 13% 97%

32% 32% 98% mapping i maxmap)

communication

on board: 90 — 400 traces, 20Mbps — 6Gbps

System Timing and Acceleration

LEON(150MIPS): 4 hours mapping, 35sec localiz.
LEON+BRAVE: 17sec mapping, ¥2-1sec localiz.

system speedup: 796x mapping, 34-56x localiz.
kernels: 1257x sweep, 158x detector,
257x descriptor, 17-70x matching

communic.

time analysis (msec), total=1030msec
150MIPS LEON + HAPS@136MHz

Conclusions

modern/advanced vision algorithms too slow on
space-grade CPUs (not only LEON @ 150 MIPS)

solution: space-grade FPGA (10x-1000x acceleration)

VHDL by hand & optimization/customization to
application had big cost decease (roughly, half)

rover’s CV in 1 Xilinx-5QV, very high accuracy/speed

feasible with the new European FPGA: BRAVE
multi-FPGA, or 1-FPGA (dynamic reconfiguration)

ThankYou!
Questions?

pixels

. 4

-8

ilﬁ 16
A

image RAM dx RAM dy RAM d’ RAM dzy RAM | |dxdy & crness
512x42 512x42 512x42 512x42 512x42 RAM 512x42 n
¢8 a 8

derivatives
convolution

1 pixel
per cycle

serial-to-parallel
(circular buffer)
RAM 512x5

pipelined

p
der tree

per cycle

cornerness
calculation

blurring
convolution

nenmaxima
suppression
+interpolation

X,y corners

BACKUP2

Virtex FPGA Board
1 SEXTANT | [N"-SEXTANT Host PC
kernel kernel
IS > User-space programs (on top of ROS) LGN
SEXTANT Ethernet Controller RJ45 _ BE:IZE?E; 77777777
Virtex Ethernet PHY Interface <> Host PC Ethernet PHY Interface ‘!‘ i
C.omCore
custom scheme with raw Ethernet Tl
on CPU: developed kernel driver Siﬁ‘;ﬁeﬁ”
= LKM, Rx-Tx SysCalls at Network layer, C++ AP! Tl
on FPGA: developed data-flow controller SEXTANT
IP Kernels

= low-level functions of Link-layer by "Eth. MAC ——
IP” from OpenCores (CSMA/CD LAN IEEE 802.3) = MResultsout
= custom: packets, handshake, backoff, arbitration

