FPGA acceleration of computer vision and optimization for European space applications

<u>G. Lentaris</u>, (glentaris@microlab.ntua.gr)

- K. Maragos,
- J. Stamoulias,
- D. Diamantopoulos,
- K. Siozios,
- D. Soudris,

M. Lourakis, X. Zabulis,

M. Aviles Rodrigalvarez

ECE, NTUA, GREECE

FORTH, CRETE, GREECE

Computer Vision in Space

Computer Vision, the Challenge

- high complexity, especially to get <u>high accuracy</u>
- LEON-FT has relatively small processing power
 > slow execution, impractical for advanced algorithms
 - ➤4 hours for mapping on 150MIPS (4Mpixel, 300 depths)
 - ➤1 minute for localization on 150MIPS (robust, error < 2%)</p>
 - ESA goal: only 20 sec and 1 sec, respectively
 Plooking for speed-up factors 10x to 1000x
- proposed solution (SPARTAN/SEXTANT): FPGA
 - develop & accelerate & compare various algorithms
 - very promising results, met ESA specs [SEFUW 2014]

NT

with Space Representative HW

COMPASS project (ESA)

- optimize best HW/SW algorithm of SPARTAN/SEXTANT
- target <u>European space HW</u>, consider multi-FPGA
 - CPU: LEON3 + RTEMS (scale time to 150 MIPS)
 - FPGA: BRAVE (use HAPS-54, limit the FPGA resources)
 - delivered highly optimized & proof-of-concept designs

ΝΤΙ

histogram of gradients

COMPASS: Selected Algorithm

image 1

LOCALIZATION:

- 1. Feature Detection: Harris (x2)
- 2. Feature Description: SIFT (x2)
- 3. Matching: x²-distance (x2)
- 4. Filter outlier matches
- 5. Motion Estimation

MAPPING:

brute-force examine 300 depth planes: SpaceSweep

image 2

COMPASS: HW/SW Partitioning

- partitioning & co-design based on methodology
 - profile on LEON3 (time, memory, comm., arithmetic)
 - select kernels, develop VHDL by hand, optimize

LOCALIZATION

MAPPING

99.9% FPGA (except a final floating-point transform)

COMPASS: Architecture Overview

Target low-cost implementations (on FPGA)

- especially w.r.t. memory: bottleneck for CV on FPGA
 - resource reuse: decompose input data, process successively

Target sufficient speed-up (for ESA specs)

- pipelining on pixel-basis & systolic architectures
 burst read of image, transform on-the-fly (1 datum/cycle)
- parallel memories & parallel processing elements
 support parallel calculation of arithmetic formulas

Target configurability (tuning, adaptation)

parametric VHDL: data size, accuracy, parallelization,

COMPASS: Extra Optimizations

Target <u>even lower</u> cost implementations

- 1) customize algorithm exactly for the ESA scenario
 - discard functionality that is rarely/never used (cost on HW!)
 - word-length optimization, adapt to datasets & rover setup
- 2) share resources among algorithms (merge in 1 unit)
 - more tight collaboration among HW modules/developers
 - sacrifice generality and ease of development/debugging
- 3) design space exploration & platform customization
 - exploit parametric VHDL, compromise cost/accuracy
 - adapt to underlying FPGA platform (e.g., use SLICEM)
- > 12 optimizations on FPGA, 2 major on CPU
 - 5 more implemented, tested, rejected due to low accuracy

COMPASS: Optimization Results

Initial FPGA Cost: almost two Virtex6 VLX240t

mapping (14% slices, 57% mem) + localiz. (57% slices, 78% mem)

Total Optimization:

- *LUTs*: -25% ← low priority (low cost, increases error)
- *DSPs*: -41% ← : fixed-point & adaptation to scenario
- RAM: -51% ← : RAM sharing & word-lengths & adapt
- *Time*: **-41%** (HW), **-90%** (SW) ← : reschedule & adapt
- at component level: up to -57% logic and -79% RAM

Fit in a Single Space-Grade FPGA

- consequently, entire design <u>fitted in Xilinx-5QV</u>!
 - Mapping & Localization & Ethernet (or Spacewire)
 - utilization: 63% LUTs, 51% DFF, 42% DSP, 98% RAMB
- design <u>meets initial ESA specs</u>, no compromise
 - Iocalization: 1-2 fps, 1.7% error (512x384 images, 100m paths)
 - mapping: 17.4 sec, 2cm error (1120x1120x3 images, 4m depth)

97% coverage, 7mm RMS error, 3.6% mistakes (>2cm error)

Feasible with European HW

- BRAVE (vs. Virtex-5QV): similar logic, half memory
 cannot fit entire COMPASS VHDL
- solution1: dynamic reconfiguration
 - e.g., like (or during) memory scrubbing, interchange between mapping & localization (every 1-2 minutes)
 use 1 big-BRAVE, need further study on actual device
- solution2: multi-FPGA
 - assume 2 or 3, medium- or hypothetical-big-, BRAVEs
 - perform HW/HW partitioning and sync optimization

- platform: <u>HAPS-54</u> (4 xc5vlx330)
 - 65nm (as BRAVE), bigger size
 - Iimit utilization, <u>emulate BRAVE</u>

- refined methodology for partitioning & sync
 - best partitioning approach: semi-automatic
 - manually: select partitions, map FPGAs, refine connections
 - auto: evaluate cost, VHDL wrappers, pin assignment (LOCs)
 - high-speed sync: improve results in progressive steps
 - regarding clock skew, I/O registers, platform characteristics

NTU

COMPASS: multi-FPGA Results

- 2 proof-of-concept demos (more studied/tested)
 equivalent to single-FPGA (accuracy + speed)
 - triple-FPGA: 1 big-BRAVE + 2 medium-BRAVE
 - double-FPGA: 2 big-BRAVE

BRAVE	LUT	DSP	RAMB18
A (med)	50%	54%	~99%
B (big)	17%	5%	~99%
C (med)	75%	~99%	92%
BRAVE	LUT	DSP	RAMB18
A (big)	9%	13%	97%
B (big)	32%	32%	98%

on board: 90 – 400 traces, 20Mbps – 6Gbps

System Timing and Acceleration

- <u>LEON(150MIPS)</u>: 4 hours mapping, 35 sec localiz.
 <u>LEON+BRAVE</u>: 17 sec mapping, ¹/2-1 sec localiz.
- system speedup: 796x mapping, 34-56x localiz.
 - *kernels*: 1257x sweep, 158x detector, 257x descriptor, 17-70x matching
 - FPGA:CPU computation ≈ 99:1
 FPGA:CPU time ≈ 2:1
 - > comput.:comm. time ≈ 5:1
 - > device utilization ≈ 20% 70%

time analysis (msec), total=1030msec 150MIPS LEON + HAPS@136MHz

- modern/advanced vision algorithms too slow on space-grade CPUs (not only LEON @ 150 MIPS)
 > solution: space-grade FPGA (10x-1000x acceleration)
- VHDL by hand & optimization/customization to application had big cost decease (roughly, half)
 rover's CV in 1 Xilinx-5QV, very high accuracy/speed
- feasible with the new European FPGA: BRAVE
 multi-FPGA, or 1-FPGA (dynamic reconfiguration)

Thank You! Questions?

<u>George Lentaris, ECE, NTUA, Greece</u> (glentaris@microlab.ntua.gr)

BACKUP1

NTUA

BACKUP₂

- custom scheme with raw Ethernet
 - on CPU: developed kernel driver
 - LKM, Rx-Tx SysCalls at Network layer, C++ API
 - on FPGA: developed data-flow controller
 - low-level functions of Link-layer by "Eth. MAC IP" from OpenCores (CSMA/CD LAN IEEE 802.3)
 - custom: packets, handshake, backoff, arbitration

NTUA