SPARTAN 6 Evaluation for Space Application

Nadia **WAZAD** – Technologies Expert

Gérard **SALVATERRA** – Active Parts Expert

Tim **PIKE** – Product Portfolio Manger for Payload Data Products

16th March 2016

CONTENTS

- ☐ Selection of Spartan-6 FPGA (XQ6SLX150T-2FG676)
- ☐ Spartan-6 Evaluation Status
- ☐ Heavy IonTesting
- □ Reliability Analysis
- ☐ Spartan-6 Assembly Evaluation

Acknowledgements

- ☐ This work was performed under Airbus DS internal R&D and partially co-funded by CNES under the following contracts:
 - DCT/AQ/EC-2012/0019591, 12/10/2012, Utilisation DSP FPGA Xilinx Spartan 6 pour application spatiale (covering the Justification File and the SEE test)
 - DCT/AQ/EC-2014/01646, 23/01/2014, Fiabilité d'un module de processing haute performance à base de FPGA CMP Xilinx Spartan 6
 - DCT/AQ/EC-2015/01158, 21/01/2015, Spécification Technique de Besoin pour évaluation en dose cumulée d'un FPGA CMP en Co60 (covering the current TID test)

Selection: Needs, Hypothesis, Criteria

☐ FPGA selection table (Cell in orange : bad / in green : good compromise)

Family/sub-family	Virtex5 QV	Virtex5	Spartan6	Artix7	Artix7	Kintex7
Reference	XQR 5VFX130T	XQ 5VLX155T	XC/XQ 6SLX150T	XQ 7A100T	XQ 7A200T	XQ 7K325T
Proccess (nm)	65	65	45	28	28	28
SEL derisk	ok	TBD	ok laser	TBD	TBD	TBD
Price	\(\Delta\)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TBD	TBD	TBD
Logic cells	130k	155k	150k	100k	200k	325k
Memory Mbits	10,7	7,6	4,8	4,8	13,1	16
Blocks DSP	380	128	180	240	740	840
DDR3	0	0	4x16	0	0	0
ARM core	no	PPC	no	no	no	no
HSSL	18	16	8	4	8	16
Consumption WC Benchmark W	\(\phi\)	☆	фф	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Package (Flip Chip or Wire Bound)	FC	FC	WB	WB	FC	FC
Grade&Temperature range	Space	-40/+100	Mil-40/+125	Mil-55/+125	Mil-55/+125	Mil-55/+125
Defense Grade Availability	Space	ok	Q3 2011	Q3 2013 TBC	Q3 2013 TBC	Q2 2013 TBC
Conclusion			good compromise			

☐ Part selected : SPARTAN6 XQ6SLX150T-2FG676

16.03.2016 4

Present Status

Test	Source	Trace code	Conditions	Availability
Construction analysis	AGI	same trace	6 mission profiles (temp, duty cycles)	✓
Heavy ions	ADS	same trace	SEL at high temperature & SEU/MBU & SEFI	✓
SEE Laser	AGI	XC6SLX9	SEL at ambiant temperature	✓
TID	ADS	Procured	3 ON (dynamic) + 3 OFF, 200 rad/h up to 100krad	Results available soon
Electrical characterization @3t	ADS	same trace	during lifetest, frequency margins	
HAST/THB	Xilinx	XC6Sxxx	130°C, 85% RH	√ quarterly report
T/C & CSAM	Xilinx	XC6Sxxx	-55°C to +125°C; CSAM tbd	√ quarterly report
Life test & DPA	ADS	same trace	4800h 125°C V max ratings	✓ Life test plan
Ageing (endurance test)	AGI		7000h 125°C & -40°C Vmax ratings	On-going
Reliability Analysis	AGI	-	-	✓
Assembly Evaluation report	ADS	same trace	Vibrations, shocks, thermal cycles	First evaluation report available

16.03.2016 5

Radiation: Heavy Ions, SEE

■ Test Conditions

- SEL
 - @ 85°C, VccMax Rating
 - Real Time Monitoring Current & Temperature
 - Periodic Reload
- SEU Characterization
 - @ 25°C, VccNom
 - Software preloaded in DUT but static design
 - Read back Select MAP
 - SEU/MBU CRAM
 - SEU/MBU BRAM

☐ Results Synthesis

- No SEL up to 65 MeV.cm²/mg @85°C Vmax rating up to 2E07 particles/cm²,
- SEU & SEFI characterized, periodic reset needed,
- No need to Power OFF the device .

Radiation: Heavy Ions, SEE

☐ Test @ Jyväskylä

Reliability : Reliability Analysis

- □ Plan of experiment has been set up to investigate the long term reliability of Spartan6 FPGA in aerospace applications for several Mission Profiles
- ☐ This plan is exclusively dedicated to the silicon failure mechanisms previously identified as relevant for space application by the construction analysis
- □ The test conditions to assess the reliability towards electro migration (EM), High Carrier Injection, (HCI) and Bias Temperature Instabilities (BTI) have been defined,
- ☐ Endurance Test will be done on 2 primitives: I/O, BRAM
 - at cold temperature -40°C 3800h
 - at hot temperature +125°C 7000h
 - → Results in Q2 2017.

Description of Spartan6 package

Characteristics	PBGA 676
Type of package	plastic
matrix	26 x 26
Dimensions (mm)	27 x 27
Pitch (mm)	1
Interconnection	solderballs 600 Sn63Pb37

 Assembly evaluation was conducted through CNES Study in 2014, « Comparative analysis of PBGA and CCGA assembly »
 (Marché sous cadre CNES n°130980)

Printed circuit board characteristics :

HDI technology was used

Material : polyimide

Finishing of boards : fused SnPb

- 6 PBGA packages were mounted on polyimid board according to automatic process assembly in Elancourt
- X-Ray inspection and electrical test of components was achieved on all boards

Side view of PBGA 676 mounted on polyimid board

- Description of test conditions for environmental tests :
 - achieved on 5 boards

	PBGA 676
Vibrations	ECSS-Q-70-38 28,5G rms en ⊥ 27,1G rms en //
shocks	2000g en ⊥ 1500g en //
Thermal cycles	1500 cycles [-55°C; 100°C] with electrical monitoring
DPA	T0, 500cycles

- Results through environmental tests
- After vibration and shocks
 - 4 /5 assembled PBGA passed successfully vibration and shocks
 - 1 assembled PBGA presented one open circuit which was detected on one external solderball => this board was kept apart

- Results through environmental tests
- Through thermal cycles :

Nb thermal cycles	4 tested boards		
200	OK for 2 boards Early electrical drifts on 2 boards		
500	OK for 2 boards Previous failures remained permanent		
1500	OK for 1 board 1 new failed board (after 639 cycles) + failed board (detected before 500 cycles)		
Drow rote 33	19 Ain Intervals - NA hell CS		

Investigation:

- Microsection revealed after 500 cycles:
 - thin cracks on top of solderballs => no impact on electrical continuity
 - Severe cracks in microvias of printed circuit board
 - Confirmed on board only submitted to vibration and shocks

Microsection of board n°3 after shocks : crack in microvia

Microsection of board n°4 after 500 cycles: crack in microvia and thin crack at solderball level

Spartan-6 assembly summary

- 6 PBGA676 were assembled on HDI board using standard automatic assembly process at Airbus DS Elancourt.
- Boards were submitted to vibration, shocks and thermal cycles.
- Except one assembled PBGA, all boards passed successfully mechanical tests.
- ☐ Electrical failures were detected earlier on PBGA assemblies
- Investigations highlighted significant cracks in PCB microvias.
 - PCB manufacturer improved its process manufacturing and delivered new printed circuit boards with successful IST test results.
 - New assembly evaluation is on going with reliable PCB.

SPARTAN 6 Evaluation for Space Application

THANK YOU

