High Performance COTS based computer **FPGA** implementation

SpacE FPGA Users Workshop 3rd edition
European Space Research and Technology Centre
Noordwijk, The Nederland
16 March 2016

Space Systems –Functional Avionics On board processing and S/W (TSOEF2) olivier.notebaert@airbus.com

OPEN

High Performance COTS based computer FPGA implementation

- High Performance Processing needs
- The High Performance COTS Based Computer Study (HiP-CBC)
- Hi-P CBC FPGA implementation

High Performance Processing Needs

High Performance Payload Processing Needs

- Payload / Instruments data processing
 - Data-flow architecture
 - High data rate front-end interface for raw data filtering and digitalization
 - Mission dependant on-board data processing
 - Data buffering in fast local memory
 - Control loops / latency requirements (in few cases)
 - Data storage in high capacity mass memory
 - Processing performance / power consumption
- Industrial efficiency requires
 Lower cost, Modularity, Flexibility...

Reprogrammable Devices

FPGAs and micro-processors

(DSP's, multi-cores, many cores,...)

OPFN

High Performance Reprogrammable devices Multi and many cores µ-processors / reconfigurable FPGA's

Commercial µProcessors and FPGA's

- Dynamic roadmap with attractive products
 - μProcessors: DSP6727, PPCs, ARM, ATOM...
 - FPGA's: Virtex, ProASIC
 - MPSoC: Zynq
- Manageable radiations issues
 - Destructive effects
 - Latch-up free or can be mitigated
 - Total dose acceptable for many LEO missions
 - Some products with "rad-hard" characteristics
 - Non permanent effects require mitigation

RAD-SOFT components

May be used for a wide range of missions

(not for all)

- Robust architecture for COTS based processing
 - Use existing COTS devices (DSP, FPGA's)
 - Mitigate radiation effects from a robust and programmable external device (SmartIO)
 - Applications to payload data processing
- Study priorities
 - Mission scalability
 - Independence of the mitigation mechanism w.r.t. processing device
 - High data bandwidth standard interfaces
 - Suitable for different types of missions
 - TRL 5-6 demonstrator
 - Mature technology
 - DSP as COTS processor

Concept

- SmartIO
 - Rad hard component
 - in charge of the isolation between the COTS world and the "rad hard" world.
 - Controls several COTS components
 - Provides scalable fault mitigation functions
 - Buffers instrument data in a fast local memory, and replays it in case of error
- Several Processor Modules
 - Implemented with µProcessor or FPGA

Concept

- SmartIO
 - Rad hard component
 - in charge of the isolation between the COTS world and the "rad hard" world.
 - Controls several COTS components
 - Provides scalable fault mitigation functions
 - Buffers instrument data in a fast local memory, and replays it in case of error
- Several Processor Modules
 - Implemented with µProcessor or FPGA

Benefits

- SmartIO / PM link is a standard HSSL
 - LVDS, SpW, SpFi, SRIO, PCIe_serial, GbitEthernet
 → flexibility, technology independence
- PM's are slaves of the SmartIO
 - · simplicity of the fault model
- SmartIO in HW+SW to manage fault mitigation
 → versatility
- Batch processing and results checks with signature
 - → performance
- Scalable Architecture
 - → adaptable to mission requirements

Demonstrator

SmartIO with SCoC3 (Leon3) for control, monitoring and reconfiguration

High Performance COTS Based Computer (HiP-CBC)

- DSP board developed by OHB_{CGS} in Milano with a DSP 6727 from TI
- Demonstration Software on Smart I/O and Processing Module S/W
- Performance and availability model

Hi-P CBC FPGA implementation

FPGA Technologies

Feature	Antifuse	Flash	SRAM
Reprogrammable	No	Yes but limited (hundreds of times)	Yes
Volatile Configuration	No	No	Yes
Online reconfiguration	No	Not Recommended	Yes
Capacity	Low	Medium	Very High
DSP Performance	Low (125 MHz)	Medium (350 MHz)	Very High (700 MHz)
Soft Error Sensitivity (SEFI, SEU, SET)	Low to Very Low	Medium to Low (configuration memory immune)	High
TID Tolerance	High	Low to medium	High

Application to SDR Payloads

- Reprogrammable FPGA's are essential for Payload / Instrument Processing
- High performance COTS Based computer study
 - Demonstration with SCoC3 + DSP C6727
 - FPGA implementation in development (ACTEL + SRAM based FPGA) for Software Defined Radio

