



# Enhancing the Reliability of COTS SRAM-based FPGAs with Microreconfiguration for SEU Mitigation in Space Applications

Alexandra Kourfali, Dirk Stroobandt, David Merodio Codinachs

ESTEC TEC-EDM 11/03/2016

Issue/Revision: . Reference: Status: ESA UNCLASSIFIED - For Official Use

1

### Introduction



#### **Space Qualified Vs COTS**

- Space Qualified are products specifically designed, qualified and tested for space applications.
- Commercial off the shelf (COTS) are products that are standard manufactured commercial products rather than custom products.
  - use these parts very carefully, test extensively
  - use for missions with shorter lifetime
  - use for missions with less quality constraints.

# Introduction



#### **COTS electronics**

- 1. ASICs
- Extensively used

#### 2. FPGAs

- High Flexibility
- Good Performance
- Runtime Reconfigurability

◆ Can we have COTS FPGA designs that are safe for space?

# Introduction



#### Which benefits can reconfiguration bring in space applications?

- 1. Reconfiguration
  - change the design (if needed) in the future
- 2. Partial reconfiguration
  - use time & space partitioning dynamically to fit a big design in a smaller FPGA
- 3. Microreconfiguration
  - compress a big design by reconfiguring only small fractions of an FPGA
    - Microreconfigure one LUT on the fly to recover from a failure





- **1.** Limitations of COTS electronics in space applications
- 2. Radiation Effects in SRAM-based FPGAs
- **3. Microreconfigurations** as a mean of SEU mitigation
- 4. Introduce Micro-Scrubbing at the FPGA flow
- 5. Architectural **Constraints** 
  - a. Logic
  - b. Routing
- 6. Architectural Overview of the system
  - a. Design Time
  - b. Operating Time
- 7. Micro-scrubbing **CAD tool** for SEU mitigation
- 8. Conclusions

# **Limitations of COTS for space**



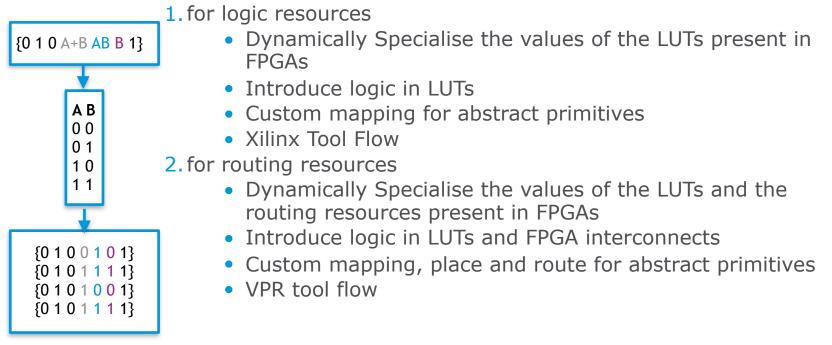
- 1. Not extensively tested for harsh radiation environments
- 2. Radiation effects
  - **SEU**, SET, SEL, SEFI etc
- 3. Vulnerabilities
  - Volatile configuration memory prone to radiation-induced errors: Soft and Hard Errors
  - Security risk that can be inherited in the system
  - A few companies perform security reviews on every commercial application
  - Bad implementations, aging effects, attacks
    - Mitigate SEU in an FPGA to reduce probability of failure



#### Single-Event Effect issues and possible mitigation solutions

|            | TMR          | Scrub        | Reconfig     | Voters       |
|------------|--------------|--------------|--------------|--------------|
| BRAM       | $\checkmark$ | $\checkmark$ |              |              |
| CLB        | $\checkmark$ |              |              |              |
| IOB        | $\checkmark$ |              |              |              |
| Configur.  |              | $\checkmark$ | $\checkmark$ |              |
| memory     |              |              |              |              |
| Config.    |              |              |              | $\checkmark$ |
| controller |              |              |              |              |
| DSP        | $\checkmark$ |              |              |              |

- 1. TMR- introduces specialisation overhead
- Scrubbing introduces time overhead. Needs resynchronisation.
- 3. Reconfiguration (partial or full) introduces specialisation overhead


Can we scrub with microreconfiguration?



#### Which benefit microreconfiguration brings in space applications?

- What is microreconfiguration?

A technique to reconfigure very small parts of the device. It only changes a small set of configuration bits only.

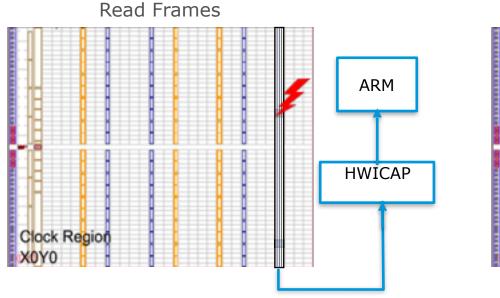


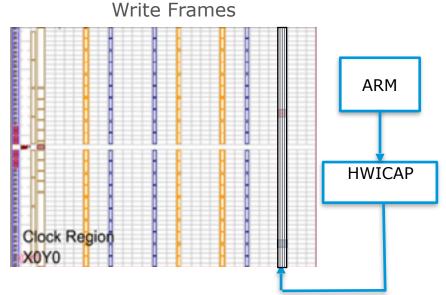


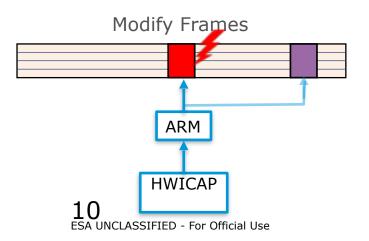
#### Which benefit microscrubbing brings in space applications?

- 1. Where?
  - critical bits that are implemented as parameters

CLBLL\_X4Y82 SLICE\_X6Y82


- - parameter

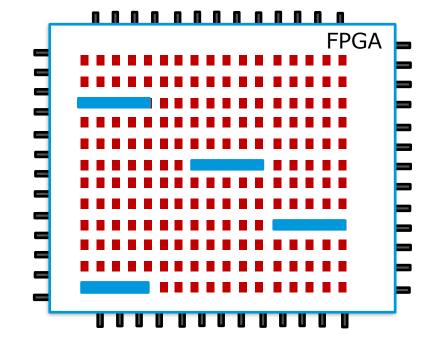

pip INT\_X4Y82 NL2MID0 -> BYP5


- 2. When?
  - When the embedded monitors detect a SEU
  - Periodically
- 3. What?
  - Read the value (SEU)
  - Scrub 1 LUT by reseting its boolean values
  - Write back the correct value

### **Micro-Scrubbing via microreconfiguration**



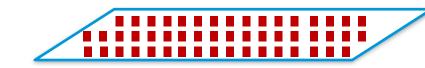







- read frames: erroneous value to be scrubbed
- 1 LUT is reconfigured when we modify the frames
- write back the initial value (reset boolean functions)

#### Multiple layers that add integrated SEU mitigation


- Free resources are used
- 1. Design Time
  - Add monitors
  - Add virtual infrastructure
  - Enable Microreconfigurations
- 2. Operating Time
  - Capture SEU
  - Micro-Scrubbing

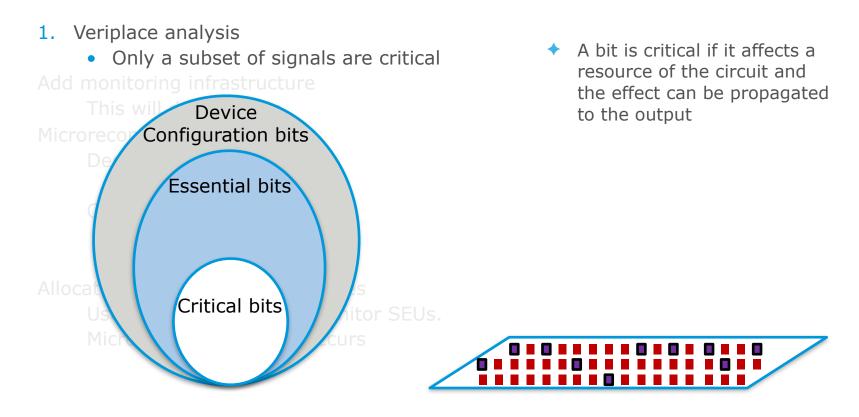




#### Multiple layers that add integrated SEU mitigation

- Free resources are used
- 1. Design Time
  - Add monitors
  - Add virtual infrastructure
  - Enable Microreconfigurations
- 2. Operating Time
  - Capture SEU
  - Micro-Scrubbing




How can I recover from SEU via scrubbing?







#### Multiple layers that add integrated SEU mitigation - Only a fraction of the signals are considered



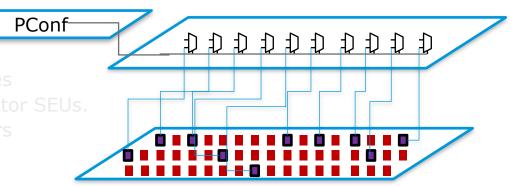


#### **Multiple layers that add integrated SEU mitigation** - Critical Bit Parameterisation

- 1. Veriplace analysis
  - Only a subset of signals are critical
- 2. Add monitoring infrastructure
  - This will detect SEUs

Microreconfigurations

Design Time Generalised Stage Operating Time Detect SEU Micro-Scrub Allocate monitors at free resources Use spare resources to monitor SEU  MUXs added at a virtual intermediate level that has no impact on the design

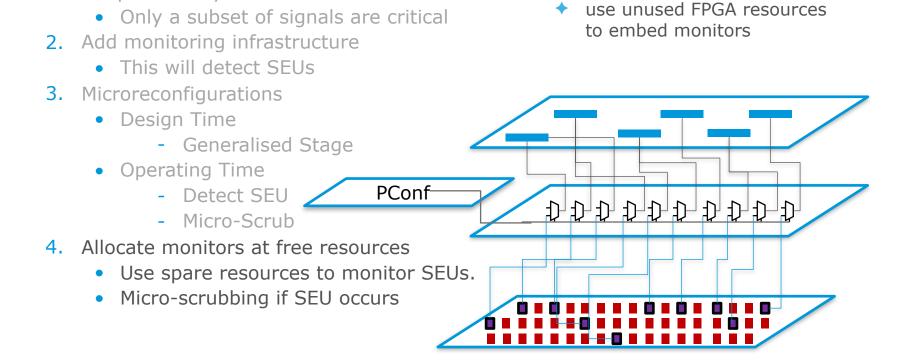





#### Multiple layers that add integrated SEU mitigation - Microreconfigurations

- 1. Veriplace analysis
  - - Only a subset of signals are critical
  - 2. Add monitoring infrastructure
    - This will detect SEUs
  - 3. Microreconfigurations
    - Design Time
      - Generalised Stage
    - Operating Time
      - Detect SEU
      - Micro-Scrub

Allocate monitors at free resources Use spare resources to monitor SE  PConf tool flow supports a virtual intermediate low overhead level of logic

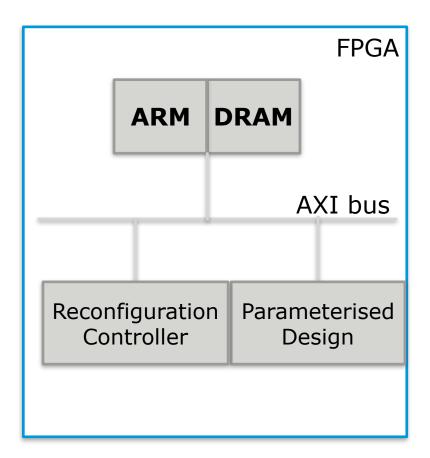





#### Multiple layers that add integrated SEU mitigation - Microreconfigurations

- microreconfigurations

**1.** Veriplace analysis





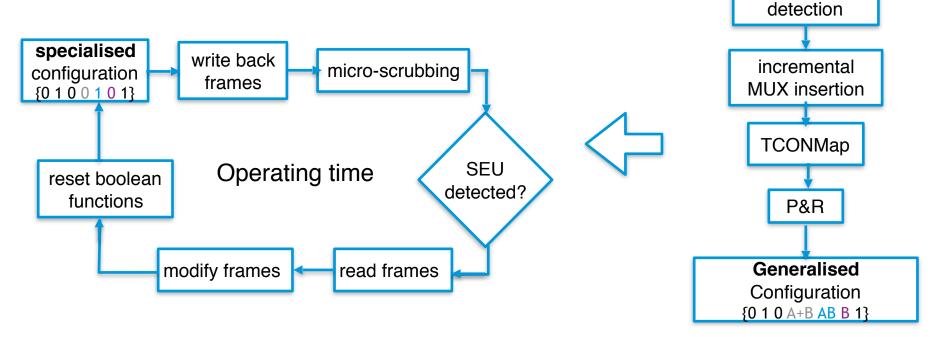

#### Self Reconfigurable Platform for SEU mitigation

#### - HWICAP reconfiguration controller

- 1. Zynq-SoC (XC7Z020 -CLG484-1, ZedBoard)
  - COTS FPGA device
- 2. ARM Cortex-A9 (667 MHz)
  - Controls microreconfiguration
- 3. AXI bus (100 MHz)
  - Connects the system
  - Data transfer
- 4. DRAM
  - Stores Boolean functions
- 5. Parameterised Design
  - With integrated monitoring
- 6. Reconfiguration Controller
  - Performs micro-scrubbing



### **Towards a CAD tool**




Design time

VHDL

Critical Signal

- 1. FPGA CAD tool flow that includes fault tolerance
- 2. Adapted Mapper that supports microreconfiguration
- 3. Generalised Stage that is created once
- 4. Specialised Stage that is invoked when a SEU occurs



### Conclusions



- 1. Introduce a fast detect and repair system for COTS
- 2. System Embedded in the design. Provoked after a SEU.
- 3. Run time reconfigurable system. Can operate real time. No resynchronisation needed after scrubbing.
- 4. Gains of microreconfiguration:
  - up to 50% less area
  - up to 35% higher clock frequency
  - up to 5 orders of magnitude less generation time
  - less memory (compressed configurations)



**Questions?** 



# Enhancing the Reliability of COTS SRAM-based FPGAs with Microreconfiguration for SEU Mitigation in Space Applications

Alexandra Kourfali alexandra.kourfali@esa.int Thank you