CONFIGURATION SCRUBBING AND MITIGATION APPROACHES FOR THE ZYNQ SYSTEM-ON-CHIP

Mike Wirthlin

RYU

FOUNDED FOUNDED BYU I875 RPOVO, UT MI

Provo, Utah USA

SEFUW: SpacE FPGA Users Workshop, March 2016

* This work was sponsored by the Department of Energy, Los Alamos National Laboratory under contract #95952-001-04 3C, the National Science Foundation I/UCRC Center for High Performance Reconfigurable Computing (CHREC) under contracts #0801876 and #1265957, and Cisco Systems.

Zynq All-Programmable SOC

- Processor Resources
 - Dual ARM A9 cores
 - NEON FPU Engine
 - L1/L2 Cache + Shared Memory (OCM)
- I/O Resources
 - SPI, I²C, CAN, UART, Flash, USB, GPIO, GigE, etc.
 - PCIe, DDR controller
- Programmable Logic
 - 350K logic cells
 - 545 BRAM (36 Kb blocks)
 - 900 DSP slices
 - 350 I/O pins

Copyright 2016

CHREC Space Processor (CSP)

- Zynq-Based CubeSat Processing board
 - Developed at University of Florida, CHREC
 - 1U CubeSat form factor 10cm x 10cm
 - Hybrid COTS/RadHard device support

- Zynq-7020 hybrid SoC

- Dual ARM A9/Neon cores
- Artix-7 FPGA fabric + hard IP
- DDR3 memory
- - Power circuit
 - Reset circuit
 - Watchdog unit

"CSP: A Multifaceted Hybrid Architecture for Space Computing", Proc. of the AIAA/USU Conf. on Small Satellites, Logan, UT, Aug. 2-7, 2014.

RadHarc

Copyright 2016

CSP Scheduled Deployment

NASA technology mission: STP-H5/ISEM on ISS NASA CeREs Satellite MASA Ceres Satellite MASA EPIC Satellites CHREC Space Processors

> NASA science mission: CeREs Cubesat

- Two CSPv1's working in tandem
- SpaceWire, camera
- Reconfiguration control
- Anticipate launch: imminent

- Heliophysics experiment in LEO orbit
- One CSPv1 computer for onboard data processing

NASA Undergraduate student Instrumentation Project (USIP): BYU Passive Inspection CubeSat (PICS)

- Passive spacecraft inspection
- Spherical camera (6 faces)
 - Data logging, compression
- CSP controls camera & power system
- Command and control
- Anticipated launch: Dec 2017

SEU Mitigation Techniques

- FPGA
 - Triple Modular Redundancy
 - Configuration Scrubbing
 - ECC/Memory Scrubbing
- Processor (Linux O/S)
 - Hardware watchdog timer
 - DDR ECC enabled (SECDED)
 - Memory scrubbing
 - Active cache management

Demo Tonight: TMR and Fault Injection

Wednesday Presentation: BL-TMR Tools and Results

memory system

Configuration Scrubbing

- Configuration memory should remain static
- Upsets in configuration *change* design
- Repair mechanism needed for configuration upsets
 - Return configuration memory to original state
 - Process called "configuration scrubbing"
- Configuration Scrubbing Responsibilities
 - Periodically check the memory to detect upsets
 - Overwrite (correct) those locations in memory where upsets are detected
- Many approaches for configuration scrubbing
 - Blind Scrubbing
 - Readback Scrubbing
 - Hybrid Scrubbing
 - External vs. Internal Scrubbing

Scrubbing Example

Configuration Interfaces

- Configuration scrubbing performed using configuration Interfaces
 - Interface for loading configuration data
 - Read configuration data (readback)
- Available Configuration Interfaces
 - JTAG serial external I/F
 - ICAP parallel internal I/F
 - SelectMap^{*} parallel exteral I/F
 - PCAP processor internal I/F

Processor Config Access Port (PCAP)

c22_05_010614

PCAP DMA Bridge

- Accessible from the Zynq processor
 - AXI Bridge/DMA Interface
 - Transfer data between DDR and FPGA
 - Interrupt Support
- Configuration Operations
 - DMA transactions
 - Setup DMA registers
 - Issue DMA transfer
 - Configuration
 - Write to TxFIFO
 - Readback
 - Read from RxFIFO

Figure 6-14: AXI-PCAP Bridge

PCAP Requirements

- Atomic operations
 - All configuration operations handled in one DMA transfer
 - Must manage DMA controller carefully
- Readback
 - Sufficient bandwidth to capture readback data
 - Break up into smaller readback packets
 - Manage PCAP Clock

7-Series Internal Scan

- Automatically detect and correct SEUs
 - Internal hardware implements SECDED
 - Continually reads configuration frames
 - Fast detection and correction speeds
- Exploits the FrameECC interface
 - Decodes Frame ECC word
 - Detects double errors
 - Identifies location of single errors (repair)
- Limitations
 - Cannot correct multi-bit upsets (MBUs)
 - May insert errors when repairing odd upsets
 - 3 or more upsets (3,5,7, etc.)
 - May try to repair upsets in "empty" location
 - "Out of bounds" upset, "masked" bits
- Global CRC: Used to detect global bitstream errors

Incorrect Scrub Examples

Hybrid Scrubbing

- Combine benefits of multiple approaches
 - Internal Scan:
 - External Scrub: Correct MBUs

High Speed

Copyright 2016

FRAME_ECC Packet Logging

- Error condition can be inferred from error signals
- Log error events
 - syndrome_valid
 - Non-zero syndrome

Error Event Types

- SBU and Odd-Numbered "In Bounds"
 - First packet detects upset
 - Second packet fixes upset
- Odd Numbered "out of bounds"
 - First packet detects upset
 - Second tries to fix upset
 - Continuous upset packets (since it can't be fixed)
- Even numbered/Masked bits
 - First packet detects upset
 - Continues to generate packets (since it isn't fixed)

Type of Upset	FRAME_ECCE2 Batches Generated
SBU	2
Even-Numbered MBU	∞
Odd-Numbered In-Bounds MBU	2
Odd-Numbered Out-of-Bounds MBU	∞
Odd MBU Correction at Masked Bit	∞

t 2016

Hybrid Scrubber Flowchart

Example

Odd In-Bounds Multi-Bit Upset

Radiation Beam Test Setup

- Radiation Tests
 - Neutrons
 - Protons
 - Heavy-lons
- Facilities
 - TRIUMF (Neutrons)
 - LANSCE (Neutrons)
 - TSL (Protons)

Hybrid Scrubber Log Excerpt

Frame_ECC 0: 8B21176B Frame_ECC 1: 60400A9C

13176.651231 : SBU corrected @ FRAD: 400A9C Word: 33 Bit: 11

13176.742754 : CRC HIGH: Multi-Bit Upset! Syndrome: 1

13176.776186 : Scrubbing FRAD: 400A9D... 13176.776914 : FAULT DETECTED! FRAD: 400A9D Word: 33 Bit(s): 10 11 13176.777756 : Word: 33 | Expected: 0 Actual: C00 13176.782169 : Scrubbing of FRAD: 400A9D Finished with 2 Upsets !

Clearing CRC latch ! After Scrub, CRC = 0

Test Results—Hybrid Scrubber

Number of Upsets in a Frame	Occurrences
1	4,239
2	326
3	133
4	41
5	3
6	7
7	2
8	1
14	1
16	1
Total Upsets Corrected	5,563
Readbacks	69
$\mathbf{Reboots}$	281
$\mathbf{Even} \to \mathbf{Odd} \ \mathbf{Upset} \ \mathbf{Scenario}$	71
Odd out-of-bounds Upsets	0
Masked Bit Upsets	0
Total Runtime	152,168.03 seconds

Performance—Hybrid Scrubber*

Upset Type	Detection	Correction	Total Scrubbing
SBUs	8.02 ms	4.5 us	8.024 ms
Two-Bit	8.02 ms	1.86 ms	13.38 ms
Odd MBUs	16.04 ms	1.86 ms	21.40 ms
Even MBUs	8.02 ms	1.86 ms	13.38 ms
Full Readback Scrub	1.82 s	1.86 ms	1.822 s

*all measurements performed on xzc07020 board

Questions?

"Xilinx 7-Series Configuration Scrubbing Architectures for High-Reliability FPGA Systems ", Aaron Stoddard, MS Thesis, Brigham Young University, December 2015