

Heavy-Ion Micro Beam Study of Flash-Based FPGA Microcontroller Implementation

Adrian Evans, Enrico Costenaro, Dan Alexandrescu IROC Technologies – France

<u>Kostas Marinis, Carlos Urbina Ortega, Houssem Laroussi,</u> <u>Giorgio Magistrati, Véronique Ferlet-Cavrois</u> ESA – Netherlands

Kay Voss-Obbe GSI - Germany

> Contract #5401002580 - UPGRADE OF ATE BASED ON NI PXI SYSTEM SEFUW – Thursday, March 17th 2016

Outline

Background

- Microsemi ProASIC3L
- Background ARM[®] Cortex[®] M0+ Implementation
- Heavy-ion Micro Beam (GSI)

Test Setup

- Control Logic
- Physical Calibration

Results

- Results Classification (SDC, DUE,...)
- Sensitivity Maps; SEUs vs SETs
- Simulation Based Analysis

Conclusions and Future Work

Background

MicroSemi ProASIC3L

	A3PE3000L
Core Voltage (V)	1.2 1.5
Technology	130nm, 7ML
VeraTiles	75 264
4608 bit BRAMS	112
CCC (including PLL)	6
VersaNet Globals	18

One VersaTile can implement:

- Any 3 input combinatorial function
- A DFF or latch with options for preset, clear, enable
- Configuration is controlled by floating gate switch

SEFUW

ARM® Cortex® M0+ Micro Processor

- 2-stage pipeline
- > 10 MHz operation to facilitate timing closure
- Running modified Dhrystone (customized to add end-of-test checks)
- 2 design versions : Protected and unprotected
 - Plain version regular Libero synthesis flow
 - ASTMR (Automatic Sequential TMR)
 - ➤ 3x replication of FFs
 - SFSMC (Safe Finite State Machine Coding)

Core	Flip-Flops	Combo VTs	Total Cells		
Plain	10 735 (90%)	1 231 (10%)	11 966		
ASMTR	12 723 (78%)	3 495 (22%)	16 227		
Control Logic	NON-CORE Logic (Interrup	t Control,)	VersaTile Based ROM		
	Plain Core Program + DATA RAM				

GSI Helmholtzzentrum für Schwerionenforschung GmbH

SEFUW

GSI Heavy Ion Micro-Beam

- Located in Darmstadt (near Frankfurt)
- Individual ions launched at specific x-y positions
- Beam is scanned over a region
 - > 624 μ m x 503 μ m in this experiment
- Multiple scans to cover processor
- > 500 nm spatial resolution of ion
- ➢ Ions accelerated up to 11.4 MeV/µm
 - Au 4.8MeV/µm. LET=94 MeV•cm²/mg)
- > 1 million individual ions fired on each design

Opened A3P3000L

Test Setup

Test Sequence

Several times a second a single ion is fired

- Prior to firing the ion:
 - Processor and memory are initialized
 - Checksum of memories (CRC of good data)
 - Program starts running
- Program sends a start message
 - DUT Signal to GSI that ready for ion
- Program runs (potentially many times)
- After an ion is detected (i.e. signaled by GSI)
 - > Wait for program to complete
 - Checksum of memories (CRC final data)
 - Report a "DONE" message
- At any time: If any interrupt (IRQ, NMI, ...) occurs, recorded with time-stamp

Physical Calibration

- > How do we know the exact location of the ion on the die?
- > Two phase process:

Phase 1 - Calibration

- 1. Program the FPGA with a "calibration load"
- 2. Fire ions on the "calibration load" and record logical position *and* magnetic co-ordinates.
- 3. Use these data points to get the mapping from magnetic co-ordinates to VT co-ordinates.

Phase 2 - CPU Testing

- 1. Fire ions at the CPU
- 2. Record magnetic co-ordinates (from GSI)
- 3. Convert back to physical location using mapping

Physical Calibration (2)

- \succ Calibration mode \rightarrow FPGA configured as array of FFs
- > After ion is fired, FFs shifted out \rightarrow get physical location

- Good alignment between magnetic and logical co-ordinates
- Small number of outliers (during calibration, these are filtered out)

Results

Classification of Failing Results

Build on the classification scheme from [1]

- SDC = Silent Data Corruption
- DUE = Detected Uncorrected Error
- Timeout = Program does not complete

Category*	Memory Checksum	Start Message	Stop Message	SW Checks	HW Interrupts
Normal	Match	On-time	On-time	Pass	None
Late	Match	On-time	Late	Pass	None
SDC	No	On-time	On-time	Pass	None
SDC	-	On-time	On-time	Fail	None
DUE		On-time			Fire
Timeout		On-time	Missing		None

[1] C.T. Weaver. Reducing the soft-error rate of a high-performance microprocessor. Micro, vol. 24, no. 6, pages 30–37, 2004. * - some very rare exception cases (e.g. missing start-message) have been excluded to simplify the presentation.

Aggregate Results Classification

- Vast majority of ions have no impact (Normal)
- ASTMR : 5x reduction of DUE ; 2.5x reduction of SDC
- ASMR significantly reduces rate of time-outs

Temporal Analysis (DUE)

Time After Reset - Clock Cycles

- Time of each ion strike is known (CPU clock cycle)
- Study of outcome versus time of ion strike (above)
- Program sensitivity is quite constant
 - Small peak in SDC at end of test (no masking)

Sensitivity Maps (Plain)

- Exact location and time and effect of each ion is known
- Produce a sensitivity map for the design
- There are clearly defined "hot" areas for SDC
- For each strike designer knows the instance of the cell

Sensitivity Maps (ASTMR)

- > Many fewer error locations (as expected)
- Still remain some "hot" regions for SDC
- Designers have detailed info for each failure event
- > Are the remaining SDC/DUE events the results of SETs?

SETs – Back of the Envelope Analysis

- SETs in ProASIC3 have widths in the range of ≈3 ns [1,2]
- The design has logic paths with 39-44 layers of logic
 - ➤ Due to broadening SETs broadened by ≈2ns
- Based on 100 nsec clock period
 - Temporal SET masking : (2ns+3ns)/100ns=5%
- SEUs are also subject to temporal masking
 - > Depends on slack analysis \rightarrow about 50% in this design
- But 90% of the VersaTiles are combinatorial

	SEU	SET
Ratio of Cells	1x	10x
Temporal Masking	50%	5%
Logical Masking	comparable	comparable
Net Effect (a.u.)	5	5

> So – even at low frequency -> SET contribution can ne non-neglibible

[1] Rezgui. New methodologies for SET characterization and mitigation in Flash-based FPGAs. TNS 2007.[2] Evans. New techniques for SET sensitivity and propagation measurement in Flash-based FPGAs. TNS 2014.

Simulation Analysis

- Using Modelsim to simulate post-layout gate-level netlist
- > 100 randomly selected error cases were studied for **SEUs**
- > X,Y co-ordinate and clock cycle are known with some uncertainty
 - Each tuple (x,y,t) up to 27 simulations were performed : (x±1, y±1, t±1)
 - Only ran cases where target cell (x±1, y±1) is sequential (SEU)

	Simulation Category	%
These errors were likely caused by an SET rather than a SEU.	Identical trace	31%
	Close Match	23%
	Classification Matched	14%
	Not re-produced with SEU	32%

Not yet performed SET fault injection simulations

Expect SET fault-injections to re-produce remaining cases

SEFUW

Future and Ongoing Work

- Shown a detailed SDC/DUE/timeout analysis for a modern micro-controller
- Temporal and spatial location of each error case
- ➤ The specific weak points in the ASTMR design are fed to design team → improve protection
- SETs appear significant even at low frequencies
- On-going work to perform SET fault-injections

Thank You!

Questions?

Backup Slides

SEFUW

Data Base Schema

17-MAR-16

Note : FFs appear as brighter squares

Plain CPU (15 297 cells, 2126 FF)

ATMR CPU (21 378 cells, 5433 FF)

MTMR CPU (19 291 cells, 4455 FF)

SEFUW

Sample Error Trace

	А	В	С	D	E	F	G	Н	l J	K	
1	sequence	class	log	tick	vt_x	vt_y	dx	dy	inst type	is_ff	
112	170845	DUE	RUN_116.TXT	13665	156	90)	0	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR3B	N	
113							· ·	-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
114								-1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
115								-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus OR2A	N	
116		NIa	iabbau	rina	ماله			0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
117		INE	ignbou	IIIg	cens	5 —	1	0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2	N	
118								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
119								1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2B	N	
120								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2	N	
121											
122	1671490	SDC	RUN_264.TXT	664	152	68	3	0	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2B	N	\Box SF
123							-	-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AX1B	N	
124							-	-1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
125							-	-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
126								0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
127								0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
128								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2B	N	
129								1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
130								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus XO1A	N	
131											
132	174409	DUE	RUN_116.TXT	13303	156	81	L	0	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus DFN1E1P0	Y	
133								-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2B	N	
134								-1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus AO1	N	
135								-1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus NOR2B	N	SE
136								0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus OR2	N	
137								0	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
138								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus OR2	N	
139								1	0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus DFN1E1P0	Y	
140								1	1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cm0pmtbintegration/u_cm0pintegration/u_imp/u_cortexm0plus MX2	N	
141											