iROC-

Heavy-lon Micro Beam Study
of Flash-Based FPGA
Microcontroller Implementation

Adrian Evans, Enrico Costenaro, Dan Alexandrescu
IROC Technologies — France

Kostas Marinis, Carlos Urbina Ortega, Houssem Laroussi,
Giorgio Magqistrati, Véronique Ferlet-Cavrois
ESA — Netherlands

Kay Voss-Obbe
GSI - Germany

Contract #5401002580 - UPGRADE OF ATE BASED ON NI PXI SYSTEM
SEFUW — Thursday, March 17t 2016



H—— ‘LROECH‘
Outline

» Background
» Microsemi ProASIC3L
» Background - ARM® Cortex® MO+ Implementation
» Heavy-ion Micro Beam (GSl)

» Test Setup

» Control Logic
» Physical Calibration

» Results
» Results Classification (SDC, DUE,...)

» Sensitivity Maps; SEUs vs SETs
» Simulation Based Analysis

» Conclusions and Future Work



B . _
«iROC

Background



N
MicroSemi ProASIC3L

| A3pE3000L

Core Voltage (V) 1.2..1.5
Technology 130nm, 7ML
VeraTiles 75 264

4608 bit BRAMS 112

CCC (including PLL) 6
VersaNet Globals 18
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ARM® Cortex® MO+ Micro Processor

» 2-stage pipeline
» 10 MHz operation — to facilitate timing closure

» Running modified Dhrystone (customized to add end-of-test checks)
» 2 design versions : Protected and unprotected
» Plain version — regular Libero synthesis flow
» ASTMR (Automatic Sequential TMR)
» 3x replication of FFs
» SFSMC (Safe Finite State Machine Coding)

Core |Flip-Flops | Combo'VTs | Total Cell

Plain 10735 (90%) 1231(10%) 11966
ASMTR 12723 (78%) 3495 (22%) 16 227
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GSI| Heavy lon Micro-Beam
GSI

> Located in Darmstadt (near Frankfu rt) GSI Helmholtzzentrum fiir Schwerionenforschung GmbH
» Individual ions launched at specific x-y positions

» Beam is scanned over a region
» 624pum x 503 uym — in this experiment

» Multiple scans to cover processor
» 500 nm spatial resolution of ion

» lons accelerated up to 11.4 MeV/um
> Au-4.8MeV/um. LET=94 MeV+cm?/mg)

» 1 million individual ions fired on each design
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Test Setup
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Several times a second a single ion is fired
Prior to firing the ion:
» Processor and memory are initialized
» Checksum of memories (CRC of good data)
» Program starts running
Program sends a start message
DUT Signal to GSI that — ready for ion
Program runs (potentially many times)
After an ion is detected (i.e. signaled by GSI)
» Wait for program to complete
» Checksum of memories (CRC final data)
> Report a “DONE” message
At any time: If any interrupt (IRQ, NMI, ...) occurs,
recorded with time-stamp
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» How do we know the exact location of the ion on the die?

Physical Calibration

» Two phase process:

Phase 1 - Calibration

1. Program the FPGA with a “calibration load”
2. Fire ions on the “calibration load” and record logical
position *and* magnetic co-ordinates.

3. Use these data points to get the mapping from
magnetic co-ordinates to VT co-ordinates.

Phase 2 - CPU Testing
1. Fire ions at the CPU

2. Record magnetic co-ordinates (from GSI)
3. Convert back to physical location using mapping
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Physical Calibration (2)

» Calibration mode — FPGA configured as array of FFs
> After ion is fired, FFs shifted out — get physical location
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» Good alignment between magnetic and logical co-ordinates
» Small number of outliers (during calibration, these are filtered out)
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Classification of Failing Results

Build on the classification scheme from [1]
» SDC = Silent Data Corruption
» DUE = Detected Uncorrected Error

» Timeout = Program does not complete

Category* | Memory | Start Stop SW
Checksum | Message | Message | Checks

Normal Match On-time On-time Pass None
Late Match On-time Late Pass None
SDC No On-time On-time Pass None
SDC - On-time On-time Fail None
DUE -- On-time -- -- Fire

Timeout -- On-time Missing -- None

[1] C.T. Weaver. Reducing the soft-error rate of a high-performance microprocessor. Micro, vol. 24, no. 6, pages 30-37, 2004.
* - some very rare exception cases (e.g. missing start-message) have been excluded to simplify the presentation.

17-MAR-16 12 SEFUW




Il ¥ N
‘LROC
Aggregate Results Classification
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Class of Outcome

» Vast majority of ions have no impact (Normal)
» ASTMR : 5x reduction of DUE ; 2.5x reduction of SDC
» ASMR significantly reduces rate of time-outs
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Temporal Analysis (DUE)

Number of Occurences

» Time of each ion strike is known (CPU clock cycle)
» Study of outcome versus time of ion strike (above)
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Time After Reset - Clock Cycles

» Program sensitivity is quite constant
» Small peak in SDC at end of test (no masking)
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Sensitivity Maps (Plain)

«iROC-

Legend

I Combo Versatile
I Sequential Verstile
[] Unused Versatile

O Location SDC Event
Location DUE Event

ET O Location Timeout Event

Scan Region

ARV 10) 7S A
% @03 1 C S B @ i
3 R S GTSS DS
@ s vy
: -'lr;’!vﬁ.‘i 5 sfﬂ‘-,' (g'@ 08 .‘é e sassanaiiss
o > (OER~ S,
Gir 6505 S S8 D OREED 5 )
@ & ) %“% Q\“./. J 7\3,‘4."
& < LDK¢ = i“‘ © & O
& i 5
i e L RS
N, A O
% (3 O
i O S O8RLT S %
) ' o
Gakes: Go) (0!‘: ; (% Q‘ @ Q &
© SRS .)
2% S @Vl =2 B 0
G %)
c v,
()
&
O ()
i ® ® 5

» Exact location and time and effect of each ion is known

» Produce a sensitivity map for the design
» There are clearly defined “hot” areas for SDC

» For each strike — designer knows the instance of the cell
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Sensitivity Maps (ASTMR)
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» Many fewer error locations (as expected)

» Still remain some “hot” regions for SDC

» Designers have detailed info for each failure event

» Are the remaining SDC/DUE events the results of SETs?

17-MAR-16 16 SEFUW



Il ¥ N
‘LROC
SETs — Back of the Envelope Analysis

» SETs in ProASIC3 have widths in the range of =3 ns [1,2]
» The design has logic paths with 39-44 layers of logic

» Due to broadening SETs broadened by =2ns
» Based on 100 nsec clock period

» Temporal SET masking : (2ns+3ns)/100ns=5%
» SEUs are also subject to temporal masking

» Depends on slack analysis — about 50% in this design
» But 90% of the VersaTiles are combinatorial

_ su s

Ratio of Cells 1x 10x
Temporal Masking  50% 5%

Logical Masking comparable comparable
Net Effect (a.u.) 5 5

» S0 — even at low frequency -> SET contribution can ne non-neglibible

[1] Rezgui. New methodologies for SET characterization and mitigation in Flash-based FPGAs. TNS 2007.
[2] Evans. New techniques for SET sensitivity and propagation measurement in Flash-based FPGAs. TNS 2014.
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Simulation Analysis

» Using Modelsim to simulate post-layout gate-level netlist

» 100 randomly selected error cases were studied for SEUs

» X,Y co-ordinate and clock cycle are known — with some uncertainty
» Each tuple (x,y,t) up to 27 simulations were performed : (xx1, yx1, t£1)
» Only ran cases where target cell (xt1, yx1) is sequential (SEU)

Simulation Category %

e Identical trace 31%
Close Match 23%

These errors were likely caused by an
SET rather than a SEU. Classification Matched 14%
\_ Not re-produced with SEU 32%

> Not yet performed SET fault injection simulations
» Expect SET fault-injections to re-produce remaining cases
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Future and Ongoing Work

» Shown a detailed SDC/DUE/timeout analysis for
a modern micro-controller

» Temporal and spatial location of each error case

» The specific weak points in the ASTMR design are fed
to design team — improve protection

» SETs appear significant — even at low frequencies

» On-going work to perform SET fault-injections
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Thank You!

Questions?
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Data Base Schema

<IROC—

Cpu records raw_sequence class_seq
rec_id —~— seq_id € seq_id
Iype rec_id log_id
ype osn type
clock _tick P
logs | raw records’ iteration calib it
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raw_text gsi_y y_matches...
\ calib_recs
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alib_to_cpu_map gsl_x vt_id trace_data
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cpu_log_id _ row instruction
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Plain CPU
P o (15 297 cells, 2126 FF)
....mp
ATMR CPU

(21 378 cells, 5433 FF)

: i MTMR CPU
Rt | | (19 291 cells, 4455 FF)

Note : FFs appear as brighter squares
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Sample Error Trace

— SET

A B C D F G | K
1 sequence class log tick vt_x vt_y dx dy inst type is_ff

112 170845 DUE RUN_116.TXT 13665 156 S0 0 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbi ation/u_cmOpi ation/u_imp/u_cortexmOplus NOR3B N —™
113 ~ -1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbi ation/u_cmOpi ation/u_imp/u_cortexmOplus MX2 N
114 -1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbi ation/u_cmOpi ation/u_imp/u_cortexmOplus MX2 N
115 -1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus OR2A N
116 . . 0 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus MX2 N
117 N e I g h bo u rl n g Ce I | S — 0 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus NOR2 N
118 1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus MX2 N
119 1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus NOR2B N
120 __ 1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus NOR2 N
121

122 1671490 SDC RUN_264.TXT 664 152 68 0 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus NOR2B N
123 -1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus AX1B N
124 -1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus AO1 N
125 -1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor AO1 N
126 0 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor AO1 N
127 0 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor AO1 N
128 1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor NOR2B N
129 1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor AO1 N
130 1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor XO1A N —
131

132 174409 DUE RUN_116.TXT 13303 156 81 0 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor DFN1E1PO Y
133 -1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor NOR2B N
134 -1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor AO1 N
135 -1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cor NOR2B N
136 0 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpi ation/u_imp/u_cor OR2 N
137 0 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpi ation/u_imp/u_cor MX2 N
138 1 -1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus OR2 N
139 1 0 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus DFN1E1PO Y
140 1 1 u_cmsdk_mcu/u_cmsdk_mcu_system/u_cmOpmtbintegration/u_cmOpintegration/u_imp/u_cortexmOplus MX2 N
141

SEU?
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