
Experience gained in Flash-
based FPGA for InSight

SEFUW 3rd Edition / ESTEC / 16/03/2016

Stéphane Humbert / SYDERAL SA

Equipment Supplier

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

Insight Mission

Interior exploration using Seismic Investigations,
Geodesy and Heat Transport

Mission Overview

Seismometer Electronic Box (SEIS-Ebox)

The Seis E-Box (Seismometer Electronic Box) is located in the main
lander and includes all functions needed to control the seismometer. The
software, developed by CNES (National Centre for Space Research), is
located in the main computer (Command and Data Handling (C&DH) unit).

Project Overview

Two FPGA Designs:
Acquisition FPGA

● Acquisition and sensor re-centring
● 10 scientific channels acquisition
● Scientific data filtering (programmable coefficients FIR filters)
● 3 VBB and 3 SP sensors velocity acquisition and control

Controller FPGA

● TM/TC Low-speed serial interface
● Scientific data High-speed serial interface
● Flash Controller including bad block management

FPGA Overview

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

State of the art

Using Microsemi RTAX-S
★ Excellent space heritage and Syderal experience

★ Radiations hardened

★ Native Triple Module Redundancy (TMR) on all D-FlipFlop

Drawbacks
❖ Antifuse technology (OTP)

❖ Prototyping phase

State of the art

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

Project main constraints

● Tight schedule from Requirement Review to Flight Model delivery

● Partner board integration

● Parallel development

● Potential changes identified

⇒ Need for a re-programmable FPGA ⇐
as RTAX-S alternative

with rollback plan

Constraints

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

Re-programmable FPGA considered

Xilinx (External SRAM configuration)

ATMEL (External PROM configuration)

Microsemi (Embedded Flash configuration)

⇒ Xilinx & Atmel reprogrammable FPGAs excluded due to:
- Low heritage at Syderal for Space application
- Performances / ressources not compliant to project needs

⇒ Microsemi RTProASIC3 selected for trade-off vs RTAX-S

FPGA Device Selection

Microsemi RTProASIC3

★ Design & use heritage at Syderal (ProASIC3)
★ Same design tools as for RTAX-S
★ Flash based configuration ⇒ Live at power-up
★ RT device uses same die as commercial one

❖ Reduced flight heritage vs RTAX-S
❖ No native rad-hardened Flip-Flops
❖ Lower radiation robustness wrt RTAX-S
❖ No re-programmable FPGA heritage for flight at Syderal

FPGA Device Selection

FPGA Device Selection

Device Actel ProASIC3
RT3PE3000L

Actel Axcelerator
RTAX 2000SL

Config Memory Internal Flash N/A (Anti-fuse)

Package CQ 256
CG 484 (23mm2)

CG 896

CQ 352
CG 624 (32.5mm2)

User I/O count 166 (CQ 256)
341 (CG 484)
620 (CG 896)

198 (CQ 352)
418 (CG 624)

Physical Aspects

FPGA Device Selection

Device Actel ProASIC3
RT3PE3000L

Actel Axcelerator
RTAX 2000SL

Total Dose >58.5kRad >300kRad

SEL Immunity >68MeVcm2/mg >117MeVcm2/mg

Qualification Level MIL-STD-883 Class E
(Extended flow)

MIL-STD-883 class V
QML Class V qualified

Native TMR
(Triple module
redundancy)

No
Radiation mitigation

required to meet specs

Yes.
All instantiated flip-flops

embed native TMR.

Radiations Aspects

FPGA Device Selection

Device Actel ProASIC3
RT3PE3000L

Actel Axcelerator
RTAX 2000SL

Speed
Compatibility

Yes (350MHz)
but radiation mitigation

has to be implemented so
timing degradation

foreseen.

Yes (350MHz)
Embeds a native TMR.

Modules 75 264 Tiles
1 TMR DFF = 4 tiles.

12'544 Flip-flops
25'088 Combinatorials

10'752 R-cells
21'504 C-cells

Performances & Resources

⇒ RTProASIC3 device fits (RT3PE3000L-1CG484)

Design/FPGA radiations mitigation

Of course standard design mitigation applies (EDAC, FSM encoding, ...)
But registers have to be protected
● What kind of mitigation scheme to implement ?
● At which development stage the mitigation has to be applied ?
● How to ensure mitigation has been well implemented ?
● Is the design behaviour still the same after TMR insertion ?

And what are the consequences due to TMR insertion ?
⇒ Reduced design performances
⇒ I/Os timings degradation

Mitigation Selection

What kind of mitigation scheme to implement and
when to implement it ?

A) Coding Phase (Block TMR)
Functional block (CC + FF) is triplicated as three black boxes;
majority voters are placed at the outputs

Mitigation Selection

Functional
Block

Functional
Block

Functional
Block

DFF + CL

MAJ3

What kind of mitigation scheme to implement and
when to implement it ?

B) Synthesis phase (Microsemi Recommended solution)
Synthesizers supporting Microsemi RTProASIC3
- Mentor Precision Synthesis (hi-rel) ⇒ Not available (ITAR)
- Synopsys Synplify Pro ⇒ Provide automatic TMR insertion
(Local TMR only)

Mitigation Selection

F
F

D

CLK

Q

CLR

D

CLK

CLR

F
F

F
F

F
F

MA
J3 Q

What kind of mitigation scheme to implement and
when to implement it ?

C) Post-synthesis (gate-level netlist)
Custom tool to infer mitigation
⇒ DRC violation & performances risks ⇒ Not acceptable

Mitigation Selection

FF
D

CLK

Q

CLR

D

CLK

CLR

FF MAJ3 Q

Fan-out change
Additional delay

(routing)

Additional delay
(cell & routing)

FF

FF

What kind of mitigation scheme to implement and
when to implement it ?

A) Coding Phase (Block TMR)
Functional block (CC + FF) is triplicated as three black boxes; majority voters are
placed at the outputs

B) Synthesis phase (Microsemi Recommended solution)
Synopsys Synplify Pro ⇒ Provide automatic TMR
insertion (Local TMR only)

C) Post-synthesis
Custom tool to infer mitigation
⇒ DRC violation & performances risks

Mitigation Selection

Is the design behaviour still the same after TMR
insertion ?

Functional equivalence between RTL and gate-level has to be checked

● Equivalence checking
● Post-layout simulations
● Enhanced tests on HW

How to ensure mitigation has been well implemented ?

No solution identified at this stage ⇒ Rely on synthesizer tool

Mitigation Selection

Selected solution

Selected Mitigation Flow

HDL Code

Synthesis

Layout
(place & route)

Programming file
(configuration)

Standard design
mitigation

Automatic TMR
insertion

Additional
constraints

Design equivalence
check

Synplify Pro
(Microsemi LiberoSoC)

Designer
(Microsemi LiberoSoC)

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

Implementations Results - Post-layout

Implementation Results

Non-TMR TMR Ratio

Core Tiles 32'348 43% 60'392 80% x 1,87

Combinatorial 24'655 37'676 x 1,53

Registers 7'693 22'716 x 2,95

Performance 30 MHz 22 MHz x 0,73

Core Tiles 35'104 47% 66'077 88% x 1,88

Combinatorial 26'720 41'371 x 1,55

Registers 8'384 24'699 x 2,95

Performance 20 MHz 17 MHz x 0,85

Verification Aspects

A) Functional Verification
As usual:

RTL Verification + Code Coverage ⇒ 99.7%
Additional tests performed on breadboard

B) Verifications required related to TMR
- Formal Verification (equivalence checking) by ESTEC
- Verified on post-synthesis netlist (gate level)
- Verification that TMR insertion has no functional impact ⇒ OK

Verification Results

Verification that TMR structure has been inserted for every flip-flop

TMR Verification

FF
D

CLK

Q

CLR

D

CLK

CLR

FF

FF

FF

MAJ3 Q

TMR Verification

A tool, Steffi (Synthesis TMR Examiner For Formal Inspection), has been
produced by ETHZ to perform the TMR topology verification.

Verification performed on post-synthesis & post-layout netlist
The tool has shown TMR on flip-flops is implemented properly on both
FPGA ⇒ TMR verification successful

❖ Introduction

❖ State of the art

❖ Constraints

❖ Solutions

❖ Results

❖ Conclusions

➔ Conclusions (Insight SEIS Equipment)

◆ Equipment planning optimization possible

◆ Flight Equipment delivered on-time

◆ Late change & bug fix on Flight Equipment

⇒ FPGA Implementation Successful

Conclusions

➔ Conclusions using re-programmable FPGA

◆ FPGA device flight representative from BB to FM
◆ Risk reduction
◆ Difficulties to stick to ECSS
◆ Use of versioning system mandatory
◆ Requires a strict database & programming files

configuration

Conclusions

➔ Conclusions for future projects using re-programmable
FPGAs

◆ ECSS-Q-ST-60-02C update to take into account
FPGA re-programmability aspects

◆ Open the door to (very) late changes...

Conclusions

Thanks for your attention

Special thanks to Jan ten Pierick (ETHZ) for its support.

Any question ?

