
THE BENEFITS OF FEEDBACK TMR FOR SEU
TOLERANCE OF SRAM FPGA DESIGNS

Mike Wirthlin
BYU

Provo, Utah USA

* This work was sponsored by the Department of Energy, Los Alamos National Laboratory under contract #95952-001-04 3C, the
National Science Foundation I/UCRC Center for High Performance Reconfigurable Computing (CHREC) under contracts #0801876
and #1265957, and Cisco Systems.

SEFUW: SpacE FPGA Users Workshop, March 2016

Triple Modular Redundancy (TMR)

•  A form of N Modular Redundancy
– Triplicate hardware resources
– Majority Vote on hardware outputs

•  Tolerates any single fault
– Tolerates many multiple fault combinations

A A

A

A

V

Copyright 2016 Mike Wirthlin, BYU

TMR Reliability

TMR has lower MTTF than non-redundant systems

Non-redundant
TMR

−λte

−2λt3e −3λt
−2e

Copyright 2016 Mike Wirthlin, BYU

1
λ

5
6λ

MTTF R(t)

TMR

Non-TMR

λ = failure rate

TMR + Repair = Very Reliable!

Copyright 2016 Mike Wirthlin, BYU

Using Classical Reliability Models and Single Event Upset (SEU) Data to Determine Optimum Implementation Schemes for Triple
Modular Redundancy (TMR), M. D. Berg, H. S. Kim, C. M. Seidleck, A. M. Phan, K. A. LaBel, J. Pellish, M. J. Campolla

5λ+µ
6λ2

MTTF=

SRAM FPGA Reliability Analysis for Harsh Radiation Environments, P.S. Ostler, M. P. Caffrey ; D. S. Gibelyou ; P. S. Graham ; K.
S. Morgan ; B. H. Pratt ; H. M. Quinn ; M. J. Wirthlin, IEEE TNS, vol 56, no 6, pp. 3519-3526, Dec. 2009.

λ = failure rate
µ = repair rate

FPGA "Repair"

•  "Repair" configuration memory
– Replace single-event upset in configuration

memory with "correct" value
– Configuration Scrubbing

•  Continuously monitor and write configuration data
•  Partial reconfiguration
•  Many strategies and techniques for scrubbing

•  Resynchronization
– Restore the operating state of the failed circuit to

the state of the correct circuits
– Can be challenging in real time

Copyright 2016

TMR & Scrubbing Example

Copyright 2016 Mike Wirthlin, BYU

TMR & Scrubbing Example

Copyright 2016 Mike Wirthlin, BYU

X

TMR Granularity

Copyright 2016

System Level Device Level

Logic Level Module Level
Mike Wirthlin, BYU

RTL Level

process(clk_int_a)
begin
 if clk_int_a'event and clk_int_a='1' then
 locked_d_a <= locked_a_int;
 if (all_locked_a = '0') then
 all_locked_a <= (locked_d_a and
 locked_d_b and locked_d_c);
 else
 all_locked_a <= tmr_voter(
 locked_d_a, locked_d_b,
 locked_d_c);
 end if;
 end if;
end process

TMR Automation

•  Limitations of manual application of TMR
–  Tedious design process
–  Error prone (improper TMR application, design errors)
–  Must redesign circuit each time TMR approach changes

•  TMR is relatively easy to automate
–  Analyze design
–  Replicate resources
–  Insert voters
–  Verify resulting circuit

•  Different Strategies for Automated TMR
–  Netlist level
–  HDL Level
–  Selective/Partial

•  Several tools available for Automatic TMR

Copyright 2016 Mike Wirthlin, BYU

Automated TMR Tools

BL-TMR

Copyright 2016 Mike Wirthlin, BYU

(and other several other academic projects)

TMR Synchronization

•  Fault repair through scrubbing
– Fixes the cause of the error
– Does NOT fix the state of the circuit

•  State of circuit must be synchronized to
working circuits

Copyright 2016 Mike Wirthlin, BYU

Synchronizing "Feedback" Voters

Copyright 2016 Mike Wirthlin, BYU

Persistent vs. Non-persistent Upsets

Non-Persistent Upset

time cycle

er
ro

r m
ag

ni
tu

de
 Upset

Correct
Output

Bitstream
Repair Upset Bitstream

Repair

Incorrect
Output

Persistent Upset

time cycle

er
ro

r m
ag

ni
tu

de

•  Some upsets repaired through scrubbing
–  Non-persistent upsets: repairable through scrubbing
–  Persistent upsets: requires reconfiguration

Feedback TMR

•  "Cut" all circuit feedback with triplicated
voters
–  Identify feedback
– Explore locations of voters

•  Advantages
– Provides self-synchronization
– Frequent voting tolerates many MBUs

•  Disadvantages
– Voters in feedback loops reduce circuit timing
– Can require significant resources

Copyright 2016

BL-TMR

•  BYU-LANL TMR Tool
– Developed at BYU under the support of Los

Alamos National Laboratory (Cibola Flight
Experiment)

– Used to test TMR on many designs
•  Fault injection, Radiation testing, in Orbit

– Testbed for experimenting with various TMR
application techniques (used for research)

•  Source available online
–  http://sourceforge.net/projects/byuediftools/
– Use/View at your own risk

Copyright 2012 Mike Wirthlin, BYU

•  EDIF data structure & API
–  Parse, represent, and manipulate

EDIF
•  Available tools:

–  EDIF parser
–  Half-latch removal
–  SRL replacement
–  Feedback cutset tool
–  Full and partial TMR
–  Detection circuitry insertion
–  EDIF output

•  Project size
–  ~50 Java packages
–  350+ Java classes
–  478,401 lines of code
–  Includes contributions from

CHREC member LANL

BL-TMR Software

[brian@tiger:test] java -cp ~/jars/BLTmr.jar
byucc.edif.tools.tmr.FlattenTMR ../no_tmr/synth/counters80.edf --
removeHL --full_tmr --technology virtex -p xcv1000fg680 --log
counters80.log

BLTmr Tool version 0.2.3, 12 Oct 2006
Search for EDIF files in these directories: [.]
Parsing file ../no_tmr/synth/counters80.edf
Removing half-latches...
Flattening

 Flattened circuit contains 3451 primitives, 3461
nets, and 13692 net connections
Processing: ASUF 1.0

Forcing triplication of instance safeConstantCell_zero

Analyzing design . . .

 Full TMR requested.
Triplicating design . . .
domainreport=BLTmr_domain_report.txt

 Added 1931 voters.
 3431 instances out of 3451 cells triplicated (99% coverage)
 6862 new instances added to design.
 3431 nets triplicated (6862 new nets added).
 0 ports triplicated.

Copyright 2012 Mike Wirthlin, BYU

EDIF Parser Flatten Half-Latch
Removal

Feedback
Analysis Triplication Voter

Insertion Netlist EDIF

BL-TMR Versions

•  Open Source
–  Basic "Full TMR" tool for FPGA netlists
–  Provides user-driven TMR scripts
–  Limitations

•  Supports Virtex and Virtex 4 devices
•  Not actively maintained, no support provided
•  Used primarily with Xilinx ISE (can be used with Vivado)

•  NSF CHREC Version
–  Updates supported by U.S. National Science Foundation Center

for High-Performance Reconfigurable Computing (CHREC)
–  Support for 7 Series and Vivado Design Suite
–  Updated voter placement algorithms
–  Board Support packages (CSP, SpaceCube, etc.)
–  IP integration

Copyright 2016

BL-TMR Design Steps

•  Analyze and Merge Design
–  Integrate IP and black boxes
– Merge pre-TMR circuit IP

•  Low-Level Circuit Analysis
–  IOB analysis and preparation
– Clock tree and domain analysis

•  Feedback Analysis
•  Voter Selection
•  TMR Identification
•  Netlist Generation

Copyright 2016

Sample Execution

[brian@tiger:test] java -cp ~/jars/BLTmr.jar byucc.edif.tools.tmr.FlattenTMR ../no_tmr/
synth/counters80.edf --removeHL --full_tmr --technology virtex -p xcv1000fg680 --log
counters80.log

BLTmr Tool version 0.2.3, 12 Oct 2006
Search for EDIF files in these directories: [.]
Parsing file ../no_tmr/synth/counters80.edf
Removing half-latches...
Flattening

 Flattened circuit contains 3451 primitives, 3461 nets, and 13692 net
connections
Processing: ASUF 1.0

Forcing triplication of instance safeConstantCell_zero

Analyzing design . . .

 Full TMR requested.
Triplicating design . . .
domainreport=BLTmr_domain_report.txt

 Added 1931 voters.
 3431 instances out of 3451 cells triplicated (99% coverage)
 6862 new instances added to design.
 3431 nets triplicated (6862 new nets added).
 0 ports triplicated.

Cost of TMR
Size	Increase	 Cri-cal	Path	

Before	TMR	
Cri-cal	Path	
A9er	TMR	

%	Increase	in	
Cri-cal	Path	

blowfish	 3.1X	 28.3	ns	 31.7	ns	 12.0%	

des3	 3.4X	 11.1	ns	 13.6	ns	 22.5%	

qpsk	 3.1X	 80.0	ns	 83.9	ns	 4.9%	

free6502	 3.3X	 29.6	ns	 33.1	ns	 11.8%	

T80	 3.3X	 27.8	ns	 33.7	ns	 21.2%	

macfir	 3.9X	 14.4	ns	 19.5	ns	 35.4%	

serial_divide	 4.1X	 9.2	ns	 12.2	ns	 32.6%	

planet	 3.1X	 10.9	ns	 12.6	ns	 15.6%	

s1488	 3.1X	 9.9	ns	 12.0	ns	 21.2%	

s1494	 3.1X	 10.4	ns	 12.2	ns	 17.3%	

s298	 3.1X	 15.8	ns	 19.1	ns	 20.9%	

tbk	 3.9X	 10.3	ns	 12.9	ns	 25.2%	

syntheGc	 4.0X	 9.9	ns	 10.4	ns	 5.1%	

lfsrs	 6.3X	 9.0	ns	 12.7	ns	 41.1%	

ssra_core	 3.5X	 6.1	ns	 7.2	ns	 18.0%	

mean	 3.6X	 8.17	ns	 12.08	ns	 16.0%	
Copyright 2016 Mike Wirthlin, BYU

TMR Experiment – LEON3

•  How does TMR improve the reliability of
the LEON3 operating on a Kintex 7 FGPA?
–  Testing Core Architecture only
–  Excluded: Caches, Interrupt Controller, MMU,

Debug Support Unit, Memory Controllers

•  Mitigation Approach
–  Apply Feedback TMR on soft logic
–  Configuration scrubbing on FPGA
–  BRAM: TMR + memory scrubbing

23
Michael Wirthlin, Andrew Keller, Chase McCloskey, Parker Ridd, David Lee, and Jeffrey Draper, “SEU Mitigation and Validation
of the LEON3 Soft Processor Using Triple Modular Redundancy for Space Processing”, 2016 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA 2016), February 2016.

Design Implementations

24

Unmitigated Mitigated

Fault Injection

25

•  Emulate configuration faults
by injecting upsets through
partial reconfiguration
–  BYU JTAG Configuration

Manager (JCM)
–  100 faults/second
–  Inject faults until an error is

detected (Mean 'Upsets' to Failure)
•  Error Detection

–  Instance two copies of LEON3
–  Triplicated detection circuitry

•  See demonstration

LEON3 Fault Injection Results

26

0	

100	

200	

300	

400	

500	

600	

700	

30	 90	 150	 210	 270	 330	 390	 450	 510	 570	 630	 690	 750	 810	 870	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	TMR

Non-TMR
mean upsets/failure = 282

runs = 6051

upsets = 1,831,859

mean upsets/failure = 14,455

runs = 2037

upsets = 29,443,885

Upsets/Failure

Upsets/Failure

51x improvement

Fault Injection Results

27

•  Unmitigated: Original design with no mitigation
•  TMR

–  No scrubbing: BRAM and FPGA Faults accumulate
–  No FPGA Scrubbing/FPGA Scrubbing
–  FPGA scrubbing/No BRAM scrubbing
–  BRAM and Configuration scrubbing (no accumulation of errors)

Heavy Ion Testing

•  Estimate orbital failure rate

•  Test Challenges
–  Scrubbing problems
–  Global clocking issues

•  GEO Orbit Estimates

Copyright 2016

Neutron Testing

•  Address challenges of heavy ion
test
–  Improved scrubbing hardware (full

device)
–  Robust clocking

•  Neutron Test at Los Alamos
Neutron Science Center
(LANSCE)

Copyright 2016

Single Point Failures (SPF)

•  Netlist-level feedback TMR did not remove
all sensitive configuration bits
– Estimated remaining Sensitive bits: 4,700
– Each bit is a "single-point failure" (SPF)

•  Source of SPFs
– Constants shared with TMR domains

•  Vivado tools combine constants

– Placement/Routing TMR Domain conflicts
•  Routing Shorts/Shared Mode (VERI-Place tool)

– Design Single-point failures
•  Clocks, I/O, JTAG/BSCAN Copyright 2016

Low Hanging Fruit

Copyright 2016

A child picking fruit, Gerard van Honthorst
Het Loo Palace, Apeldoorn

"a course of action that can be
undertaken quickly and easily
as part of a wider range of
changes or solutions to a
problem"

Low Hanging Fruit

Copyright 2016

Low Hanging Fruit

The fruit that is easiest to gather.
Most of the fruit is "low hanging"

Middle Fruit

Fruit that is higher in the tree and
that requires more effort (ladders,
fruit pickers, etc.).

High Fruit

The highest fruit that requires the
most effort to pick. There is much
less fruit at the top of the tree than
at the bottom and the middle.

Harvesting the SEU "Fruit"

Copyright 2016

"Fruit" – Sensitive configuration bits in
an FPGA design. We want to 'pick' as
many of them as possible.

"Picking" the configuration bits
involves mitigating the design so
these configuration bits no longer
cause design errors.

It is more and more difficult to pick the
"fruit" as it is higher in the tree.

The amount of "fruit" to pick depends
on the amount of effort you are willing
to invest in the harvest.

It may not be worth it to get "all" of the
fruit out of the tree.

LEON3 "Fruit"

Copyright 2016

Low Fruit: TMR (netlist) + Scrubbing
 54,700 (23%) - 4,700
 51x improvement

LEON3 Processor: 240,000 sensitive bits

Middle Fruit: Constant Routing
 ~3,000 (1.3%) – 1,700
 141x improvement

Middle Fruit: TMR Placement/Routing
 ~1,500 (.6%) - 700
 343x improvement

High Fruit: Design SPF
 ~500 (.2%) - 200
 1200x improvement

Top Fruit: Unknown
 ~200 (<.1%) - 0
 ∞ improvement

Low Fruit: TMR (netlist)
 180,600 (75%) – 59,400
 4x improvement

35

Technique	 Mi-gated	 Sensi-ve	
Bits	

Improvement	

UnmiGgated	 0	 240,000	 1x	

TMR	(netlist)	 180,600	(75%)	 59,400	 4x	

TMR+Scrubbing	 54,700	(23%)	 4,700	 51x	

Constant	Trees	 3,000	(1.3%)	 1,700	 141x	

Placement/
RouGng	

1,500	(.6%)	 700	 343x	

Design	SPF	 500	 200	 1200x	

Unknown	 200	 0	 ∞	

TMR Going Forward

•  Low-level TMR enhancements
–  Unique constant generation
–  Multi-domain routing conflicts (post-routing TMR)

•  Investigation into complex designs/structures
–  Soft-Processor Cores
–  Multi-core SOCs

•  Integration of other mitigation approaches
•  Improved timing aware TMR
•  Verification support
•  GUI support
•  Enhanced voting options and automatic selection

Copyright 2016

Summary

•  TMR is effective at mitigating SEUs for SRAM-based
FPGAs
–  Must be coupled with configuration scrubbing

•  Feedback TMR provides self-synchronization
•  The BL-TMR tool has been used to mitigate many

FPGA designs (LEON3 Soft processor)
–  Fault Injection Results
–  Radiation Testing

•  TMR is not sufficient for mitigating all SEUs
–  Memory ECC/Memory scrubbing
–  Additional placement/routing aware tools needed

•  TMR is an important "low hanging fruit" approach to
SEU mitigation

Copyright 2016

Questions?

Copyright 2016

