Space Radiation and Plasma Environment Monitoring Workshop

Space Radiation & Plasma Environment Monitoring Workshop ESTEC 9/10 May 2012

Highly Miniaturised Radiation Monitor (HMRM)

Doug Griffin, Renato Turchetta, Henrique Araújo, Nicola Guerrini, Edward Mitchell, Alessandra Menicucci, Eamonn Daly, Andrew Marshall, Olly Poyntz-Wright, Tom Morse,

Simon Woodward

10 May 2012, ESTEC

Science & Technology Facilities Council Technology Imperial College London

HMRM Final Presentation Overview

- Key Requirements
- HMRM Design overview
- Particle Identification Algorithm
- Data products
- Detailed design overview
 - Mechanical
 - Electrical
- Programme status
- Future work

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

HMRM Consortium

Consortium Member	Role
STFC - RAL Space	 HMRM Consortium Lead Overall design and development of HMRM
STFC – Technology Department	 HMRM ASIC Sensor Design and Development
Imperial College London – High Energy Physics	 HMRM Particle radiation simulation HMRM Particle Identification algorithm development HMRM testing
ESA ESTEC	 Technical contract management

Consortium strengths:

- Expertise in development of Space instrumentation
- Expertise in instrumentation for High Energy Physics instrumentation
- Knowledge of the space radiation environment

10 May 2012, ESTEC

Imperial College London

Aims of the HMRM programme

- Develop a "chip sized" ¹ prototype radiation monitor suitable for application in:
 - Coarse radiation housekeeping
 - Alert and saving function
 - Support to platform and payload systems

Note 1: The clear implication of "chip sized" is that the HMRM is to be smaller, lighter and consume less power than a more conventional radiation monitor...

Science & Technology Facilities Council Technology Imperial College London

10 May 2012, ESTEC

HMRM Key Requirements

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Functional Requirements

Requirement

The highly miniaturized radiation monitor (HMRM) shall be an ASIC/APS radiation detector with on-chip sensor elements, read-out electronics, power and communications resources

The HMRM design shall minimize the number of external components needed to operate the device.

Preferred process for the CMOS die shall be a commercial process by a European Foundry

The HMRM design shall minimize the number of pins needed to interface the spacecraft/host PCB

Dosimeter function: The HMRM shall maintain a counter of the accumulated total dose detected

10 May 2012, ESTEC

Imperial College London

Functional Requirements (cont.)

Requirement

Particle Rate Meter function: a rate meter counter shall be maintained. The maximum particle rate shall be 10⁷ (#/cm²/sec) or higher

Particle Species Identification function: capability to classify on chip detected events with respect to particle species (electrons, protons, ions) shall be implemented

The dynamic range shall be such to maximize the discrimination of different particles species for typical satellite orbits within the energy range as indicated in the Statement of Work

The highly miniaturized radiation monitor shall have a temperature monitor on chip. The temperature sensor shall have an accuracy of better than 1°C over the range -40 to +80°C. All calibration parameters to be provided with the detector

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Functional Requirements (cont.)

Requirement

An in-flight calibration procedure shall be implemented in order to check sensor drift

The HMRM shall include the ability to isolate erroneous sensor elements

The HMRM design shall foresee the possibility of coincidencing operation modes in which several HMRM devices are distributed on different location of the spacecraft

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Physical and Electrical Requirements

Requirement

The package selected shall allow the possibility to stack more than one detector and to interleave detector chips with passive shielding materials

The power dissipation shall be minimized and be less than 200mW on average

The radiation sensor shall require a minimum of power supply pins. The power supply voltage shall be 5.0 V or lower

HMRM shall be tolerant to ESD on any of its pins with a Human Body Model voltage of at least 300V

The HMRM shall require a minimum of external reference voltages

The mass of HMRM device shall be less than 20 g

10 May 2012, ESTEC

Environmental Requirements

Requirement

The radiation detector single chip shall have a radiation TID tolerance of at least 100kRad

The radiation detector single chip shall be latch up free

The radiation detector single chip shall have an operating temperature range of -40 to +80°C

The radiation detector single chip shall have a storage temperature range of -60 to +125°C

The sensor shall be capable of meeting the performance requirements under full solar illumination at an orbital radius of 1 AU

10 May 2012, ESTEC

Quality and Test Requirements

Requirement

Evaluation testing shall be performed compliant to ECSS 9020 [AD-2]

Testing shall be performed to find the 50% failure level of the detector to at least the following conditions:

- Mechanical Shock level
- Mechanical Vibration level (random and sine)
- High and Low Temperature
- Radiation total dose

The HMRM shall be free of all non-European export restrictions and shall take all measures needed to ensure this

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Key Requirements: Summary and interpretation

Customer needs:

- High quality characterisation of the space radiation environment
 - Dose
 - Electron and proton spectra
 - Wide range of environments
- Low cost
 - Unit cost of Monitor
 - Spacecraft resources (power, mass, TM etc.)
 - Integration
 - Data processing

Imperial College London

10 May 2012, ESTEC

HMRM Design overview

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Sensor Tradeoff

- Key tradeoff in the architecture of the sensing element of the HMRM was between a PIN Silicon Diode and Active Pixel Sensors
- APS sensors have several advantages for application in the HMRM

Parameter	Comments
Mass	Integrating the detector function with the signal readout makes APS much more compact
Sensor integration	The sensing element is fully integrated on the monitor chip with APS sensors
Signal quality	Able to achieve ~10 e ⁻ rms noise with saturation of 15 ke ⁻ with APS
Power supply	Bias voltage of CMOS is 3.3 V and no need for "high" voltages to drive the diode into depletion
Flux dynamic range	The APS is able to be electronically shuttered to avoid pileup in high flux environments
Bremsstrahlung susceptibility	The APS detectors have a low cross section for interaction with high energy photons

Science & Technology Facilities Council Technology Imperial College London

10 May 2012, ESTEC

Sensor Tradeoff

- Ambiguity exists where the energy deposited in the detector by a low energy particle is the same as the energy deposited by a MIP passing through the detector
- Active volume of APS detector: 12 μm with 50-500 μm substrate
- \bullet Active volume of Silicon diode: > 50 μm

• With APS sensors; judicious selection of Silicon substrate thickness allows the dE/dx curve to be sampled and uniquely identify the particle species and energy

Imperial College London

HMRM Design Summary

Characteristic	Specification					
Sensing element	50 x 50 array of 20 μ m x 20 μ m , 4T APS detectors					
Configuration	Either single chip, or integrated monitor					
Mass	Integrated monitor: 52g (including fasteners and connector) in a stack configuration	Single Chip: 0.8 g				
Power	1-2 W (TBC) depending of number of detectors in stack and architecture of power supply	Single Chip: < 200 mW per ASIC				
Volume	Integrated monitor: 20x25x30mm - 15 cc	Single chip (unpackaged): 2.54x10x0.6 mm				
Radiation measurements	Integrated Monitor: Dose Dose rate Particle radiation spectra: • Electrons: 0.06 – 6 MeV • Protons: 1 – 500 MeV	Single Chip: Dose Dose rate				
Maximum flux	10 ⁸ #/cm ² /s					
Aux. measurement	Temperature					
Interface	Integrated Monitor: Data: TM/TC CCSDS CAN Power: 5 V (standard)	Single Chip: Data: CMOS logic I/O Power: 3.3 V + 0.3V references				

Imperial College London

10 May 2012, ESTEC

HMRM Block Diagram

Imperial College London

10 May 2012, ESTEC

HMRM CAD Model

Imperial College London

10 May 2012, ESTEC

HMRM Structure

10 May 2012, ESTEC

Imperial College London

HMRM Mode Transition Diagram

Imperial College London

10 May 2012, ESTEC

HMRM Data products

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Data Products

- HMRM Generates four types of CCSDS compliant TM frames
 - Engineering
 - Basic radiation HK data
 - "Full Science"
 - Provides data for retrieval of particle spectra
 - Transparent
 - Diagnostic
 - Error frames

10 May 2012, ESTEC

Imperial College London

Data Products

	bits	Full Science	Eng.	CRC Error Event	Transparent
CCSDS Header	48	Yes	Yes	Yes	Yes
TM ID	16	Yes	Yes	Yes	Yes
Time	42	Yes	Yes	Yes	Yes
TC ID for CRC Error Event	16			Yes	
Temperatue	9	No	Yes		Yes
Cumulative Lifetime Doses	64	Yes	No		No
Dose Rates	64		Yes		
Dose Rate Flags	4		Yes		
Mean Particle Rate	26	No	Yes		No
Time of Mean Particle Rate Calculation	16	No	Yes		No
Q Vector	736	Yes	No		No
Front Sensor Alert Flag	1	No	Yes		No
tc	25	Yes	No		No
Transparent Output of Detectors	30600	No	No		Yes
tc2	25		Yes		No
ID Dependent Counter "J(3)"	69	No	Yes		No
CRC Packing	6			Yes	No
Full Science Packing Bits	29	Yes	No		No
Engineering Packing Bits	0	No	Yes		No
Transparent Packing Bits	5	No	No		Yes
Packing Bits	48	Yes	Yes	Yes	Yes
CCSDS CRC	16	Yes	Yes	Yes	Yes
	bits	1024	384	192	30784
	Num. CAN Frames	16	6	3	481
RAL Space Science & Technology Facilities Council Imperial Council London					al College n

uncyc London

Data Products

- Engineering and "Full Science" frames are generated at a user configurable rate
- TM bandwidth a function of cadence of measurements only
 - In normal operation average TM rate can be exceedingly low
- Transparent generated at maximum capacity of CAN bus

Imperial College London

10 May 2012, ESTEC

PCB

- Flex rigid PCB design
- Four rigid boards
 - Interface connector PCB
 - Interface PCB
 - FPGA PCB
 - Detector PCB

- Very complex design challenge
 - 10 layer PCB
 - 248 through holes
 - 100 buried vias
 - 151 micro-vias
 - HASL finish for soldered components
 - Gold finish for wire bonded ASICs

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Interface connector

- •25-way MDM
- Power +5V / return
- CAN I/F lines
- Tell back
- Extra functions for Phase A/B device
 - voltage probes
 - JTAG for FPGA re-programming

Imperial College London

10 May 2012, ESTEC

Interface PCB

VCC_IO_FPGA

Reference voltages

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

FPGA Power up / reset

FPGA Board

- •281 contacts
- 10x10 mm package
- Low proportion of programmable I/Os utilised
- High density micro vias and buried vias required to route signals to flex layers

10 May 2012, ESTEC

Imperial College London

FPGA Functions

CAN (Controller Area Network) Hurricane Core Time keeping Command CODEC Telemmetry packaging System clock Radiation monitoring data processing APS configuration register programming logic APS waveform generation Bad pixel masking function Engineering mode processing

Device: Microsemi AGL 1000V - CSG281

COTS device Flash programmable 1,000,000 System gates

~80% utilisation

HMRM SR&PEM WS Presentation

FPGA Architecture

Imperial College London

10 May 2012, ESTEC

Detector PCB

Mounts the three APS HMRM ASICs in a stack configuration

Sensors are glued to the PCB and co-aligned with respect to reference features

Sensors are wire bonded to PCB (either Gold or Aluminium wire bonds)

Local decoupling capacitors

Test points included for probing of signals

Imperial College London

Detector PCB

Science & Technology Facilities Council Technology Imperial College London

10 May 2012, ESTEC

Mechanical Design

General View

Imperial College London

10 May 2012, ESTEC

Mechanical Design

Three main mechanical elements of the HMRM Chassis

- Lid
 - Provides the prescribed geometry for detector telescope
 - Mounts the window (for visible blindness)
- Body
 - Main structural housing around electronics and sensing elements
- Base
 - structural interface to spacecraft
 - shields back of HMRM

Fabricated in Titanium

Mass 52g (including fasteners and connector)

10 May 2012, ESTEC

Imperial College London

HMRM Programme Status

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

HMRM Programme Status

- Design of Phase A/B monitor complete
- ASIC run #2 to be submitted today!
 Returned from foundry ~ Sep. 2012
- Wafer level checkout, screening and characterisation
- Assembly into deliverable monitors
- Test and characterisation

10 May 2012, ESTEC

HMRM Future Work

10 May 2012, ESTEC

HMRM SR&PEM WS Presentation

Future work

- Complete the hardware technology demonstration aspects of the HMRM programme with the second iteration of the ASIC
 - ASIC functional and performance testing
 - Integration of ASICs into a HMRM monitor
 - HMRM functional, performance and environmental testing
- Commercialisation
 - The Statement of Work explicitly calls for planning for commercialisation of the HMRM
 - The next steps in this regard include:
 - Baselining the differences between the Phase A/B device and a flight qualifiable Phase C/D device
 - Completion of the planning of the development programme to develop the HMRM to this level of maturity

10 May 2012, ESTEC

Imperial College London

Summary

- The HMRM Phase A/B programme is close to successfully demonstrating the remarkable potential of applying CMOS APS technology to the design of a highly miniaturised spacecraft radiation monitor
- The presenters acknowledges the contribution of ESA to this work in the awarding of AO/1-5978/09/NL/AT to the consortium and the invaluable assistance from ESTEC staff

10 May 2012, ESTEC

Imperial College London