Advances on Space Radiation and Plasma Environment Monitoring, Data Analysis and Flight Opportunities Workshop ESA/ESTEC, Noordwijk, The Netherlands 9-10 May 2012

CMOS Active Pixel Sensors for

Science & Technology Facilities Council

Technology

space radiation monitoring

R. Turchetta Rutherford Appleton Laboratory U.K

> D. Griffin, A. Marshall, T. Morse, O. Poyntz-Wright, S. Woodward (RAL Space, UK)

Acknowledgments

- > H. Araujo, E. Mitchell (Imperial College London, UK)
- > A. Menicucci, E. Daly (ESA/ESTEC, NL)
- ≻ R. Henderson, G. McMullan, W. Faruqi (MRC-Laboratory of
- Molecular Biology, UK)
- ≻ G. van Hoften (FEI)
- N. Guerrini, R. Coath, J. Crooks, B. Marsh (RAL Technology, UK)

CMOS Sensor for radiation detection

> A 16Megapixel sensor for

Transmission Electron Microscopy (TEM)

A CMOS image sensor for the Highly Miniaturised Radiation Monitor (HMRM)

Conclusions

CMOS Sensor for radiation detection

- > A 16Megapixel sensor for
- **Transmission Electron Microscopy (TEM)**
- A CMOS image sensor for the Highly Miniaturised Radiation Monitor (HMRM)
- Conclusions

Detection of particles in CMOS sensors

Highly integrated sensor

Pixel choice. Integrating sensors

CMOS Sensor for radiation detection

A 16Megapixel sensor for Transmission Electron Microscopy (TEM)

A CMOS image sensor for the Highly Miniaturised Radiation Monitor (HMRM)

Conclusions

8

A 4kx4k sensor for Transmission Electron Microscopy

Electrons accelerated at 100keV – 1MeV. Most typical energy: 300 keV

- Single electron sensitivity
- > Pitch = 14 μ m > 56mmx56mm focal plane > sensor >
- reticle \rightarrow stitching
- > Radiation hardness \rightarrow Enclosed geometry layout and guard ring rules
- Off-chip control and analogue output
- ➢ 0.35 µm CMOS

Radiation hardness

A 16Mpixel sensor for TEM

- > 61x63 mm² silicon area (4 dies per 200mm wafer)
- ➢ 0.35µm CMOS
- > 16 million pixels, 4Kx4K array
- ≻ 14 µm pixels
- Radiation hardness of >500
 million of primary electrons/pixel
 (>20 Mrad)
- Backthinned
- Readout noise = 83 e- rms
- ≻ 40 fps

- > 32 analogue outputs
- Pixel binning
- Region Of Interest readout
- \succ Binning 1X, 2X and 4X
- External 16 bit ADCs

CMOS Sensor for radiation detection

> A 16Megapixel sensor for

Transmission Electron Microscopy (TEM)

A CMOS image sensor for the Highly Miniaturised Radiation Monitor (HMRM)

Conclusions

Noise (in e-, before board noise correction)

Landau distribution (from beam test results)

A CMOS sensor for a Highly Miniaturised Radiation Monitor (HMRM). Main specifications.

- ➢ 0.18 µm CMOS Image Sensor technology
- \blacktriangleright 20 μm 4T-pixels in a 50 x 51 array
- Snapshot and correlated double sampling (CDS)
- Frame rate up to 10,000 fps
- Column-parallel 3-bit single-ramp ADC, with incolumn trimming
- Digital readout, plus analogue readout for debugging
- Integrated DAC for voltage/current generation
- Band gap

Temperature sensor

09 May 2012, ESTEC

HMRM Final Presentation

Imperial College

London

Sensor floorplan

60 sensors manufactured on 12 μm, low resistivity epitaxial substrates

60 sensors manufactured on 12 μm, high resistivity (>1kOhm cm) epitaxial substrates

Design for radiation tolerance: -Total dose

-- single event upset immunity

Imperial College London

Imperial College London

09 May 2012, ESTEC

Analogue-to-Digital Conversion

•1 comparator per column (readout on both sides)

• Seven 7-bit programmable thresholds \rightarrow 49 bit shift register for programming

• One 8-bit DAC for each comparator trimming adjusting \rightarrow 816 bits shift register for programming

- •Threshold 1:0 to 673e- (40.3mV) STEP 5.3e-
- •Threshold 2 : 0 to 673e- (40.3mV) STEP 5.3e-
- •Threshold 3 : 0 to 1346.2e- (80.77mV) STEP 10.6e-
- •Threshold 4 : 0 to 2688e- (161.3mV) STEP 21.16e-
- •Threshold 5 : 0 to 4762e- (285.75mV) STEP 37.5e-
- •Threshold 6 : 0 to 9419e- (565.15mV) STEP 74.2e-
- •Threshold 7:0 to 18753.6e- (1.125V) STEP 147.6e-

1 e- = 60 μ V; 7-bit DAC to generate thresholds

09 May 2012, ESTEC

Output data path

•3-bit encoder per comparator

• Data read on a 9 bit bus \rightarrow 2*17=34 clock cycles for readout

• plus one clock cycles for temperature sensor data (9-bit)

•Test input to the entire shift register

- Triple majority voting (TMV) system for single event upset immunity
- TMV used for programming and readout shift registers, except in shift register controlling the analogue readout
- Enclosed geometry layout for total dose tolerance (entire chip)

Imperial College London

Results. CDS

09 May 2012, ESTEC

CMOS Sensor for radiation detection > A 16Megapixel sensor for **Transmission Electron Microscopy (TEM)** A CMOS image sensor for the Highly Miniaturised Radiation Monitor (HMRM)

Conclusions

- > CMOS image sensors provide new solutions to radiation detection
- > 16 Mpixel sensor for TEM already in the market (Falcon camera, by FEI)
- High radiation tolerance
- Highly Miniaturised Radiation Monitor (HMRM) based around a CMOS image sensor now in development
- > 1st iteration 90% functional
- > Measured noise = 16.8 e- rms \rightarrow
- S/N (m.i.p.) = 69
- HMRM instrument about to be tested with sources
- > 2nd iteration on its way with reduced power consumption and improved cross-talk and reliability

Questions?

www.dsc.stfc.ac.uk/cmossensors