

Advanced CCSDS File Delivery Protocol Hardware IP Core

Mladen Berekovic, Sören Michalik, Sönke Michalik, 10th June 2016

The CCSDS File Delivery Protocol (CFDP)

Delay-tolerant File Delivery Protocol for Space

 Configuration parameters to adapt communication (distance in light-time, timer limits, entity IDs etc)

 Reliable file transfer and remote file system management over interplanetary distances

Features

- Unreliable and reliable sender and receiver
- Delivery of files and user messages
- Reliability: CRC / File Checksum
- maximum 64kB packet size, 4GB file size

External requirements driving the Architecture

Performance

ESA Euclid Mission

- 850Gbit/Day
- 75Mbit/s downlink

Next Generation Mass Memory

- Average 1.5Gbit/s
- Maximum 5Gbit/s

Variability

- High Configurability
- Different CCSDS encapsulation formats
- Generic Filestore Interface
- CAD Tool & commercial library independence

Workflow of the Study

IP Core Definition

- Features Selection
- Hardware/Software Partitioning

SystemC IP Core Implementation

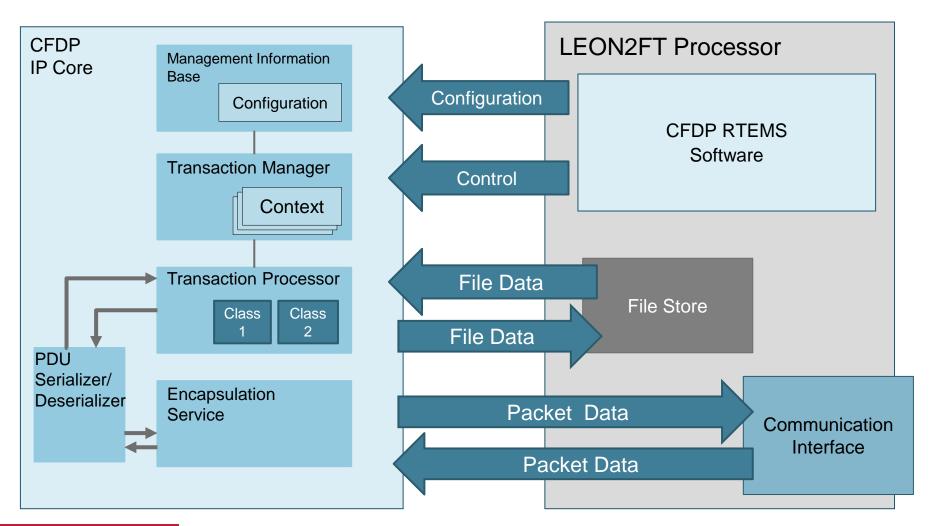
- IP-Hardware modeled in SystemC
- Tests on SoCRocket Virtual Platform

VHDL IP Core Implementation

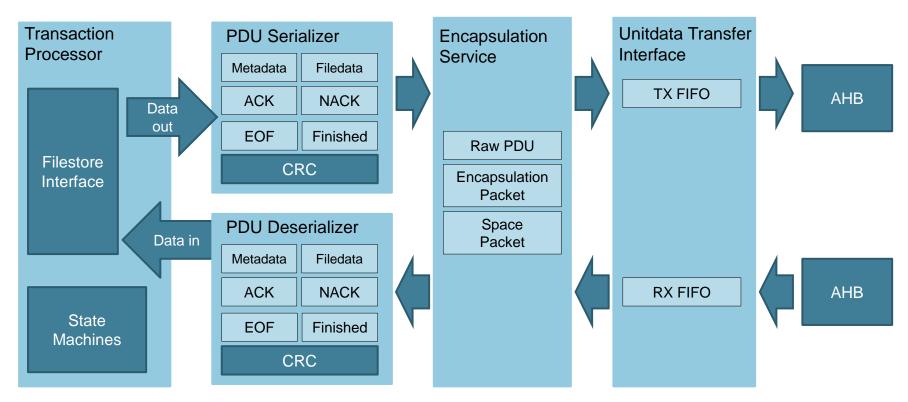
- VHDL Hardware design
- SEE Mitigation and LEON3 / LEON2FT System integration
- RTEMS software library and driver development

IP Core Validation and Deployment

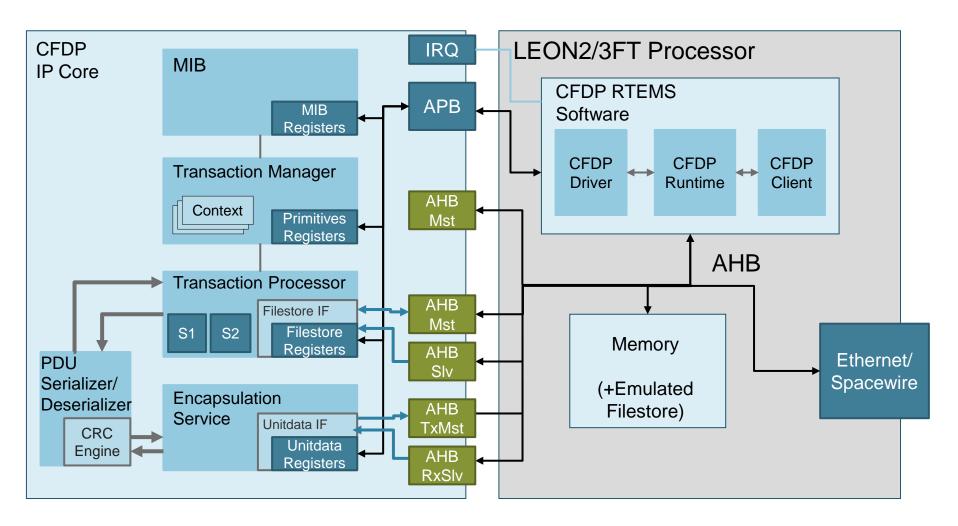
- Map to a FPGA prototyping board
- Verification and Validation tests


Technology Mapping

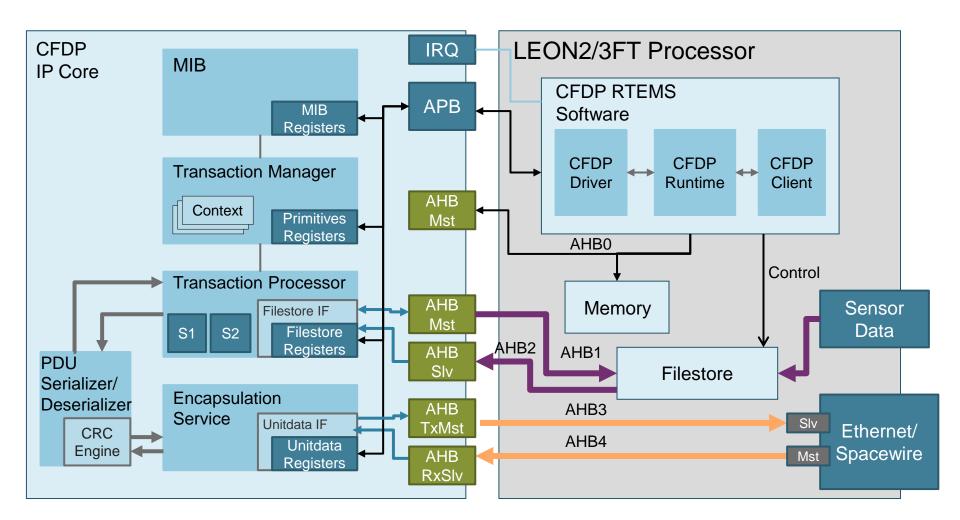
- Map to FPGA technologies
- Map to ASIC technologies


CFDP-IP System Architecture

PDU Serialization/Deserialization Pipeline



High throughput of processing pipeline: up to 1Word/cycle → 400 MB/s @ 100MHz


CFDP-IP System Architecture

CFDP-IP System Architecture (streaming config)

Details On The Hardware Architecture

Transaction Manager

- Handles creation, management and scheduling of the active transactions
- Stores transaction contexts
- Timer implementation

Transaction Processor

- Executes transaction using state machine
- Filestore Interface
- PDU serializer / deserializer interface

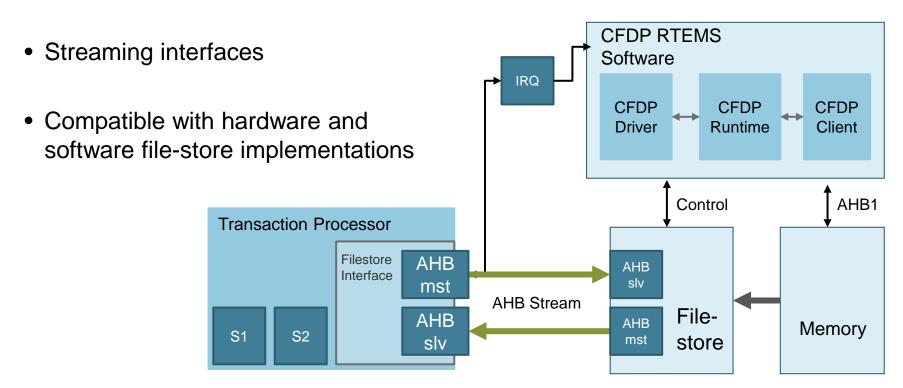
Details On The Hardware Architecture

Management Information Base

- Global configuration storage accessible through APB registers
 - Local- and remote Entity-IDs
 - Remote Entity UT addresses
 - Light times (distances to remote entities)
 - Timer and counter limits
 - Flags
 - Fault handler information
 - System information and configuration

Details On The Hardware Architecture

CRC Engine


- 16-bit standardized CCSDS CRC code at the end of PDUs
- Calculates and attaches checksum for outgoing PDUs
- Validates checksum for incoming PDUs
- 16-bit checksum with the generator polynomial: $G = g(x) = x^{16} + x^{12} + x^5 + 1$

Filestore Interface

Generic interface protocol

Filestore Interface

FILESTORE REQUEST FORMAT

The Filestore interfaces uses the following format to request file segment data via AHB:

Create file - request (Request Length = 4):

1stWord	2nd Word
Request	File
Header	Size

Filedata open/close file - request (Request Length = 4):

1stWord	2nd Word
Request	File
Header	Handle

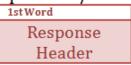
Filedata read next segment - request (Request Length = 12):

1stWord	2nd Word	3 rd word	4th word
Request	File	Seek	Segment
Header	Handle	Location	length

(Seek location = file position offset in bytes)

Filedata write - request (Request length = Segment length + 12):

			88		
1stWord	2nd Word	3 rd word	4 th word	5 th word	
Request	File	File	Segment	Data	
Header	Handle	position	length		



Filestore Interface

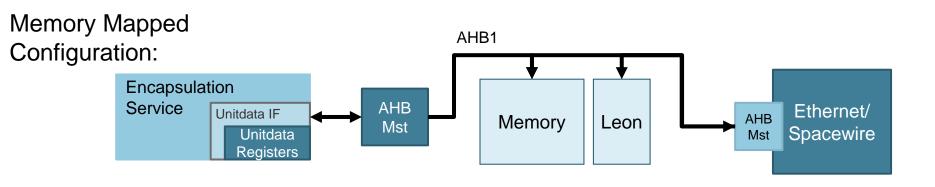
FILESTORE RESPONSE FORMAT

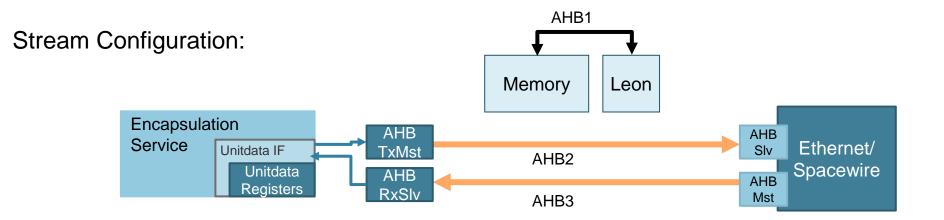
The Filestore interfaces uses the following format to response to requests via AHB:

Open File / Close File / write next segment - response (Response Length = 0):

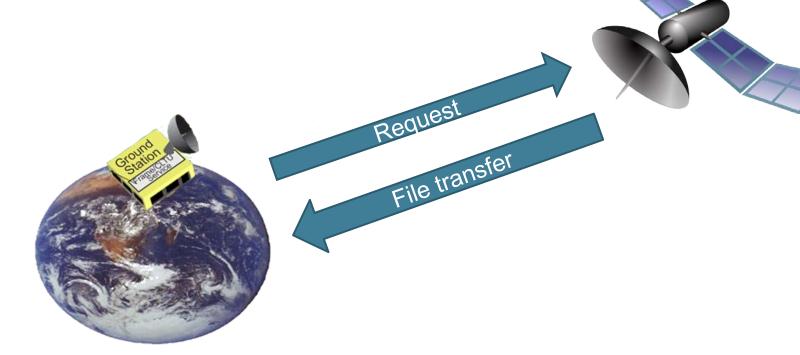
Create File - response (Response Length = 4):

1stWord	2nd Word
Response	File
Header	Handle


Read next segment - response (Response Length = segment length):


1stWord	2nd Word	3rd word	4 th word	5 th word		Ť
Response Header	Data	Data			Data	

Unitdata Transfer Interface



Advanced protocol features: remote operations

Support for Remote Put-Request (2 party):

Advanced protocol features: remote operations

Support for Remote Put-Request (3 party): Request

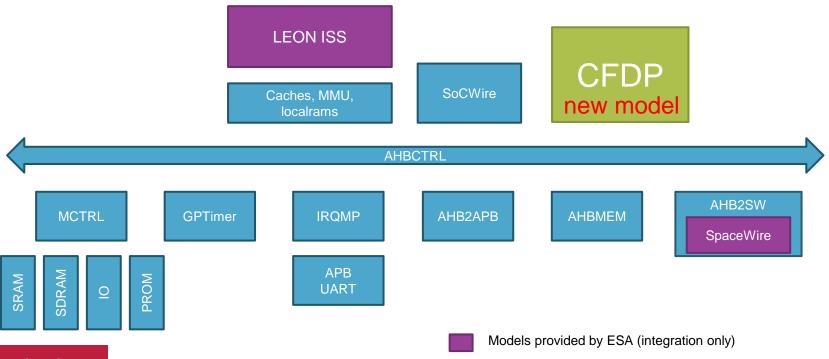
SystemC IP Development

- Early software and driver development
- Evaluation of SystemC-IP architecture and interface configuration during the development
- SYSTEM CTM

- Measuring performance
- Modeled in SoC-Rocket virtual processor platform

Design Space Exploration

Find an optimal configuration of the IP-Core architecture and interfaces to improve the maximum performance



The SoCRocket Virtual Platform

SystemC/TLM2 Simulation IP + Design Infrastructure

- Simulation model for GRLIB core components
- Models featuring different operating point:
 - Extensive Design Space Exploration (high accuracy / medium speed)
 - Low-Level SW Development & Early Exploration (medium accuracy / high speed)

SoCRocket – Example use cases and features

HW IP Development:

- Infrastructure for quickly building new components
 e.g. Bus-Interfaces, Register Container inherited from library base-classes
- Integration of RTL components with custom transactors

Low-Level SW Development:

- Register/bit true system environment
- SW Flow equivalent to GRLIB: including boot code
- Support for real-time OS: RTEMS, μC OS, ...

System Exploration:

- Runtime reconf. all parameters can be change without compilation
- Lots of debugging and analysis features

Verification and Validation

- The IP was verified and validated with automated tests using the ESE CFDP reference software and additional VHDL module testbenches
- The verification and validation process followed the test series of the yellow-book test specification:

"CCSDS CFDP – Notebook of common interagency test for core procedures"

- F1 Unacknowledged and Acknowledged modes, canceling an ongoing transaction, user messages
- F2 Acknowledged mode, including automatic recovery from dropping of the PDUs, timer tests
- F3 Check two party Remote Put and proxy operation
- F4 NAK modes, suspend and resume, CRC tests
- F5 two party remote operations

IP Performance

- The maximum throughput was measured for different file sizes (32bytes, 5KByte) with a segment size of 512 Bytes on Virtex 5 FPGA
- Throughput highly depends on communication interface and File-store implementation
- Measurements for unreliable (Class 1) and reliable (Class2) file transfers

Configuration	Downlink Throughput	Uplink Throughput	Loopback Throughput	
	2050 0 151 11	4060 = 151.4	406403514	
Class 1, big file size	2079,8 Mbit/s	1860,5 Mbit/s	1964,0 Mbit/s	
Class 2, big file size	1641,0 Mbit/s	1715,4 Mbit/s	1766,3 Mbit/s	

TABLE 5 – IP CORE PERFORMANCE (HW FILESTORE, 5KB File Size)

IP Performance II

- The CFDP-IP was mapped to various technologies (ASIC and FPGA):
 - Virtex XC5VLX110T 60MHz (incl. Leon3)
 - DARE 0.18µm 150MHz
 - TSMC 65nm 450MHz
- IP logic area is highly configurable using parameters:
 - Downlink only, Uplink only, Uplink + Downlink
 - File segment length
 - FIFO sizes
 - Number of parallel transactions

Demonstration Video

Summary

CFDP VHDL IP implementation

Delay-tolerant file delivery protocol for space

Highly configurable

High throughput streaming interfaces

- → reduced memory accesses
- → direct interface option
- → maximum AHB throughput:
- 3,2Gbit/s = 400MB/s @ 100MHz

Compatible with hardware and software based Filestore implementations

