

CFDP FILE TRANSFER PROTOCOL

-Final Presentation Days-

Author: Valentin Picos

Agenda

- 1. CFDP file transfer protocol "What is CFDP?"
- 2. Project overview
 - budget, tasks, milestones, standards, challanges
- 3. Technical approach
- 4. Q&A

"What is CFDP?"

- CFDP provides the capability to transfer 'files' to and from a spacecraft mass memory.
- The content of the files may be anything
- Offers multi-hop capabilities (SFO store and forward overlay)

"What is CFDP?"

- Files can be transferred reliably, where it is guaranteed that all data will be delivered without error (class 2), or unreliably, where a 'best effort' delivery capability is provided (class 1).
- Files can be transmitted with a unidirectional link, a half-duplex link, or a full-duplexlink
- File transfer can be triggered automatically or manually

Project overview (budget)

Original contract: 199,878 Eur

Extension: 42 000 Eur

Start Date: 16 April 2014

End Date: 14 April 2016

PROJECT CONTEXT

ENEA is prime contractor and Airbus subcontractor

Project overview (scope)

C implementation required (class 1, class 2, SFO and latest modification of the standard)

Linux (x86)

PikeOS (Leon 4-SPARC V8)

RTEMS (Leon 4-SPARC V8)

Project overview (tasks)

		 _				1		-	 1	1	1	1	
Project Kick-Off													
Management and reporting													
Project ramp up													
Training on development framework													
Training on ECSS standards													
Support on all project phases													
Environment specification & ECSS tailoring													
System Software Specifications													
CFDP protocol analysis and tailoring													
Requirement Specification													
SRR													
Detailed Design													
PDR													
Implementation													
CDR													
Verification & Validation													
QR													
Demonstration and consolidation													
AR													
y 11 1	 	 						_	 			 1	

Project overview (timeline)

- SRR milestone: 07.11.2014

- PDR milestone : 29.05.2015

- CDR milestone: 11.12.2015

- QR milestone : 03.03.2016

- AR milestone : 14.04.2016

Project overview (standards)

ECSS-E-ST-40C (tailored)

ECSS-Q-ST-80C (tailored)

Project overview (challenges)

ECSS-E-ST-40C (tailored)

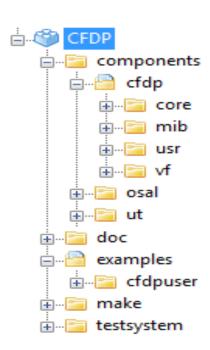
ECSS-Q-ST-80C (tailored)

Technical approach (Applied standards)

[1] CCSDS File Delivery Protocol (CFDP). Recommendation for Space Data SystemStandards, CCSDS 727.0-B-3. Blue Book.

[2] CCSDS File Delivery Protocol (CFDP)—Part 2: Implementers Guide. Report Concerning Space Data System Standards, CCSDS 720.2-G-3. Green Book.

Technical approach (Modular design)


CFDP library

OSAL library (POSIX-Linux and RTEMS, Kars-PikeOS)

UT library

cfdpuser

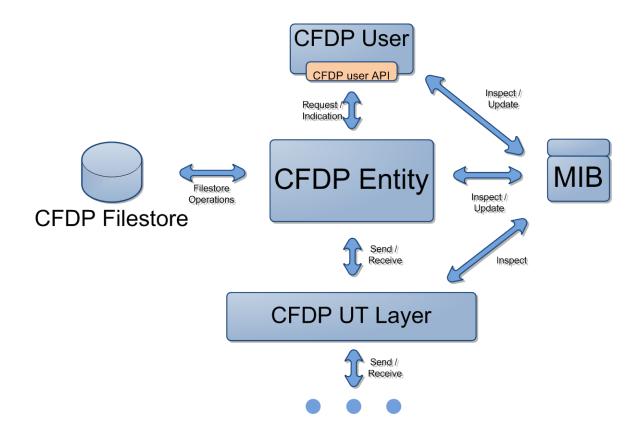
Testsystem framework

Technical approach (Logical Model Description)

The CFDP implementation software consists of three major components:

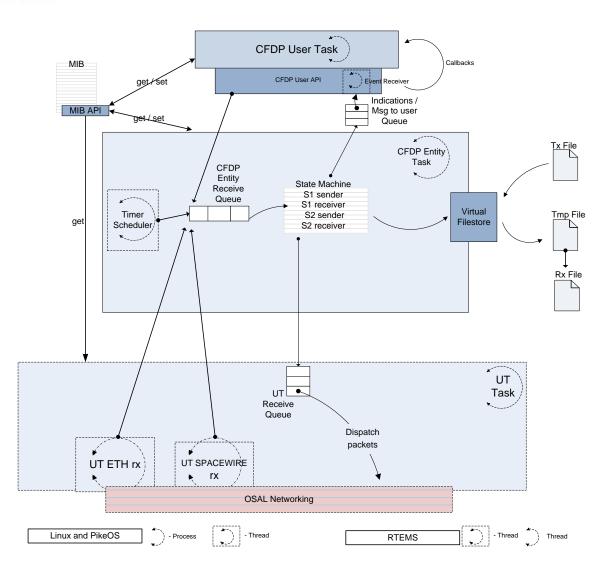
CFDP Core – this implements the CFDP class 1 and class 2 ans sfo CFDP User – this is using the CFDP User library to exercise the CFDP Core features

UT – this component is transferring the in/out CFDP PDUs of CFPD Core.


Each component is available as standalone executable application.

Technical approach (Logical Model Description)

Technical approach (Process overview)


- Processes communicates through message queues
- Transaction with priorities
 - Named priority message queues
 - Starvation avoidance algorithm
- CFDP Entity process uses state machine for Class 1&2 receiver&sender
- CFDP Entity process uses a thread for timer events
- UT support both Ethernet (UDP) and SpaceWire

Technical approach (Process overview)

Technical approach (Validation - Applied standards)

[1] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0-Y-9. Yellow Book.

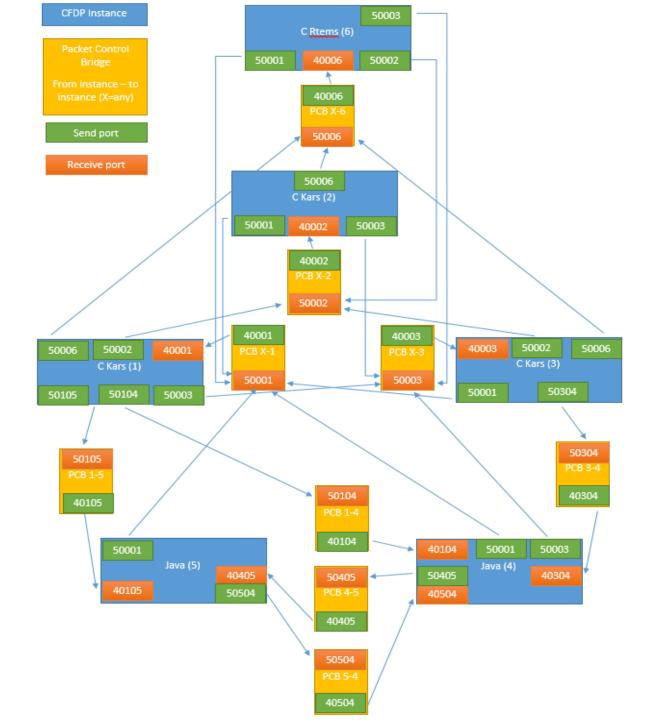
Technical approach (Validation)

Java reference implementation

Develop test framework for test automation

Packet Control Bridge (PCB) – from Java implementation integrated in our test framework

Full Yellow Book coverage


Technical approach (Validation)

Test environment:

- 1XRegular PC x86 and 1xLeon4-N2X-DS (quad core) board connected by Spacewire and Ethernet

Test setup:

- Multiple C CFDP instances running on x86 (Ubuntu VM)
- Multiple Java CFDP instances running on x86 (Ubuntu VM)
- One C CFPD instance running on Leon4 board (RTEMS)

Technical approach (challenges)

- -Add support for multiple architectures (x86, SPARC) and OSes (RTEMS, PIKEOS and Linux)
- -Write unit tests to achieve high code coverage numbers
- -Develop a flexible functional test system able to handle complex test setup (see SFO functional tests)

QA?