
Porting of MicroPython to LEON Platforms

Damien P. George

George Robotics Limited,
Cambridge, UK

TEC-ED & TEC-SW Final Presentation Days
ESTEC, 10th June 2016

George Robotics Limited (UK)

I a limited company in the UK, founded in January 2014

I specialising in embedded systems

I hardware: design, manufacturing (via 3rd party), sales

I software: development and support of MicroPython code

D.P. George (George Robotics Ltd) MicroPython on LEON 2/21

Motivation for MicroPython

Electronics circuits now pack an enor-
mous amount of functionality in a tiny
package.

Need a way to control all these sophisti-
cated devices.

Scripting languages enable rapid development.

Is it possible to put Python on a microcontroller?

Why is it hard?

I Very little memory (RAM, ROM)
on a microcontroller.

D.P. George (George Robotics Ltd) MicroPython on LEON 3/21

Why Python?

I High-level language with powerful features (classes, list
comprehension, generators, exceptions, . . .).

I Large existing community.

I Very easy to learn, powerful for advanced users: shallow but long
learning curve.

I Ideal for microcontrollers: native bitwise operations, procedural
code, distinction between int and float, robust exceptions.

I Lots of opportunities for optimisation (this may sound surprising,
but Python is compiled).

D.P. George (George Robotics Ltd) MicroPython on LEON 4/21

Why can’t we use existing CPython? (or PyPy?)

I Integer operations:

Integer object (max 30 bits): 4 words (16 bytes)

Preallocates 257+5=262 ints −→ 4k RAM!

Could ROM them, but that’s still 4k ROM.

And each integer outside the preallocated ones would be another 16
bytes.

I Method calls:

led.on(): creates a bound-method object, 5 words (20 bytes)

led.intensity(1000) −→ 36 bytes RAM!

I For loops: require heap to allocate a range iterator.

D.P. George (George Robotics Ltd) MicroPython on LEON 5/21

Crowdfunding via Kickstarter

Kickstarter, since 2009; collected so far over US$1 billion in funds

I 30th April 2013: start!

I 17th September: flashing LED with switch in bytecode Python.

I 21st October: REPL, filesystem, USB VCP and MSD on PYBv2.

1 weekend to make the video.

Kickstarter launched on 13
November 2013, ran for 30
days.

Total backers: 1,931
Total raised: £97,803

Officially finished 12 April 2015.

D.P. George (George Robotics Ltd) MicroPython on LEON 6/21

Manufacturing

Jaltek Systems, Luton UK — manufactured 13,000+ boards.

D.P. George (George Robotics Ltd) MicroPython on LEON 7/21

It’s all about the RAM

If you ask me ‘why is it done that way?’,
I will most likely answer: ‘to minimise RAM usage’.

I Interned strings, most already in ROM.

I Small integers stuffed in a pointer.

I Optimised method calls (thanks PyPy!).

I Range object is optimised (if possible).

I Python stack frames live on the C stack.

I ROM absolutely everything that can be ROMed!

I Garbage collection only (no reference counts).

I Exceptions implemented with custom setjmp/longjmp.

D.P. George (George Robotics Ltd) MicroPython on LEON 8/21

Internals

external bindings

user defined builtins using C
or other native language at

compile t ime

import

builtin modules are added to scope
user modules are compiled and executed

parse
tree

tokens

eval/exec/compile stringREPL prompt user scripts

runt ime

support code for executing Python code

builtin types (int, float, str, tuple, list, dict, ...)
builtin exceptions (TypeError, IndexError, ValueError, ...)

builtin functions (max, min, range, sort, sum, ...)
builtin modules (sys, os, array, math, ...)

- load/store global variables
- execute functions/methods by dispatching

- glue code, etc

virtual machine

executes bytecode

viper code

machine code

typed version of Python
can be executed directly

native code

machine code

proper Python semantics
can be executed directly

bytecode

source info
line info
bytecode data

executed by VM

compiler

turn parse tree
into code

lexer

turn script into a
stream of tokens

parser

turn tokens into
a parse tree

calls

calls

can load

calls

calls

calls

executed by

produces

produces

can produce

produces

produces

produces

D.P. George (George Robotics Ltd) MicroPython on LEON 9/21

Object representation

A MicroPython object is a machine word, and has 3 different forms.

Integers:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxx1

I Transparent transition to arbitrary precision integers.

Strings:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx10

I Certain strings are not interned.

Objects:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx00

I A pointer to a structure.

I First element is a pointer to a type object.

I ROMable (type, tuple, dictionary, function, module, . . .).

Work on LEON port added representation for 64-bit NaN boxing.

D.P. George (George Robotics Ltd) MicroPython on LEON 10/21

GitHub and the open-source community

https://github.com/micropython

MicroPython is a public project on GitHub.

I A global coding conversation.

I Anyone can clone the code, make a fork, submit issues, make pull requests.

I MicroPython has over 2900 “stars” (top 0.02%), and more than 580 forks.

I Contributions come from many people, with many different systems.

I Leads to: more robust code and build system, more features, more
supported hardware.

I Hard to balance inviting atmosphere with strict code control.

A big project needs many contributors, and open-source allows such projects to
exist.

D.P. George (George Robotics Ltd) MicroPython on LEON 11/21

Porting MicroPython to LEON

Small activity (ESTEC contract 4000114080) for ‘MicroPython in Space’.

Objectives:

I Prototype port of MicroPython to LEON 2, on top of RTEMS 4.8
I 10 months duration, exploration of idea (no qualification)
I Special attention to the needs of Space:

I determinism
I concurrency
I low use of resources (CPU, RAM)
I interfacing to native (C/Ada) code

Deliverables:

I improved MicroPython core
I SPARC / LEON support
I RTEMS port with rtems module
I OBCP prototype engine
I test suite
I reports: analysis, description of system, user manual

D.P. George (George Robotics Ltd) MicroPython on LEON 12/21

The port to LEON: improvements to core

I separation of VM and compiler (only VM would need to be
qualified, about 200kB compiled excl. RTEMS)

I MicroPython cross compiler and persistent bytecode generation
I option for 64-bit NaN-boxing object model:

I floats are objects: heap needed, good overall speed
I floats are boxed: no heap (deterministic), faster FP ops, slower

overall due to 64-bit copying

I tool to order static hash tables to proper hashes
I understanding of determinism:

I execution time of VM opcodes
I allocation of heap memory

I optimisations to eliminate heap usage in places (eg iterators)

I many bug fixes and speed optimisations (eg combining bytecodes)

D.P. George (George Robotics Ltd) MicroPython on LEON 13/21

The port to LEON: LEON specifics

I support for SPARC v8 architecture

I ability to have multiple VMs running in the same address space,
each with their own heap

I multitasking delegated to RTEMS (atomicity of ops guaranteed)

I synchronisation achieved with RTEMS queues

I multitasking also available via Python co-routines using ”yield”,
good for soft real-time applications (can share heap)

I creation of the rtems module (queue, task, semaphore, timer)

I datapool module to share data (from C and Python)

I OBCP prototype engine (see later)

D.P. George (George Robotics Ltd) MicroPython on LEON 14/21

The port to LEON

Heap management:

I traditional problem, it can be non-deterministic

I IBM metronome GC is too complex for qualification

I simplest solution: allocate beforehand, most functionality uses stack

I heap lock and heap unlock methods (exception raised on
allocation, can be managed)

Performance:

I about 100x slower than equivalent C code (expected, similar to PC)

I implement performance critical code in C and wrap it (easy to do)

I Python is an application-level language, fast development

D.P. George (George Robotics Ltd) MicroPython on LEON 15/21

OBCP prototype engine

A prototype On-Board Control Procedure engine, not qualified, just for
demonstration purposes.

Features:

I 4 VM instances (2 idle, 2 running)

I VM interface: load, execute, pause, resume, step, stop

I simulated Ground sends precompiled bytecode

I C tasks, Python tasks running together

I communication via queues and datapool

I demonstrates calls to native code

I heap is locked after start-up

D.P. George (George Robotics Ltd) MicroPython on LEON 16/21

OBCP prototype engine

 MicroPython VM and runtime system

PWTH queue

TLM queue

DATAPOOL

Global hash table
accessed from C

and Python

VM task

POWER

task_power.py

Python script running the
power control loop at 10Hz.

VM task

THERM

task_therm.py

Python script running the
thermal control loop at 1Hz.

TC queue

RTEMS C task

TC

task_tc.c

Receives telecommands from
Ground and controls the VMs.

RTEMS C task

TM

task_tm.c

Telemetry task prints messages
from TM queue to serial line.

RTEMS C task

TEMP

task_temp.c

Reads temperature sensors
and sets temperature values
directly in datapool.

RTEMS C task

GROUND

task_ground.c

List of predefined commands
that are sent on TC queue.

VM Control via
RTEMS notepad

D.P. George (George Robotics Ltd) MicroPython on LEON 17/21

Thermal script

D.P. George (George Robotics Ltd) MicroPython on LEON 18/21

License and availability

I MicroPython core: MIT license

I the port to LEON: “ESA Community License Type 3, permissive”
(restricted to ESA states)

I for exporting outside ESA region, talk to me

I code available (mid-end June) in European Space Software
Repository: https://essr.esa.int/

I documents available: Analysis and Adaptation; Test Spec and
Report, Executive Summary, Final Report, User Manual

D.P. George (George Robotics Ltd) MicroPython on LEON 19/21

Conclusions and Future activities

A powerful and modern language, large community, powerful tools —
now available for constrained/embedded systems!

Possible applications in Space: general purpose application language for
payloads, OBCP engine

Other applications:

I schools/teaching (micro:bit, pyboard, high-schools and universities)

I hobbyists and hackers

I embedded engineers, to make prototyping easier

I great potential for IoT

Continued software/hardware development:

I Python 3.5 support, and improved compatibility with CPython

I partnering with chip vendors to support their MCUs

I development of new boards

D.P. George (George Robotics Ltd) MicroPython on LEON 20/21

micropython.org

forum.micropython.org

github.com/micropython

D.P. George (George Robotics Ltd) MicroPython on LEON 21/21

