

IMA Kernel Qualification preparation

Mark Hann, Fabrice Cros, Regis De Ferluc – Final Presenation

SCISYS, AIRBUS, TAS, Trinity College Dublin 9th June 2016

Kernel Qualification Preparation Objectives

- Define Partitioning Kernel Requirements for the European Space Domain.
- Define how the Partitioning Kernel will be qualified in European Space Domain
 - » ESA Study

• Consortium:

Supported by: cnes

Trinity College Dublin

Scope of Qualification

SCISYS

Kernel Qualification Preparation

- **Phase 1:** Consolidation of requirements baseline, for IMA **Partitioning Kernels**
 - Conformance assessment of shortlisted kernels, against requirements baseline.
- **Phase 2:** Overall qualification strategy and detailed test plan for qualification of IMA Separation Kernels
 - Identification of suitable methods and techniques for verification and **》** validation.
 - Formal Methods Activities Described in Separate Presentation
- **Phase 3: Experimentation and evaluation of the defined** qualification strategy
 - Evaluation of adequacy and appropriateness of the selected methods **>>** and techniques.

Kernel Qualification Preparation

- Phase 1: Consolidation of requirements baseline, for IMA Partitioning Kernels
 - » Conformance assessment of shortlisted kernels, against requirements baseline.

Requirement Baseline

• Requirements are segregated between:

- » CORE Requirement: requirement specifying an essential functionality of the partitioning kernel under specification
- » EXTENDED Requirements: requirement specifying a non-essential or highly specific functionality of the partitioning kernel under specification. These requirements are second priority requirements that can be de-scoped in a qualification process.

• Multi-Core Requirements:

- » Defined in annex of the document
- » Most (>95%) of the single-core requirement are also multi-core requirements

• EXTENDED and Multi-Core Requirements have not been considered for the next phase

- » Targets are only single core processors
- » Only core requirements are mandatory in the follow-up project

Requirement Baseline

Input documents

- » ARINC 653 standard
- » IMA-SP requirements baseline
- » LVCUGEN software System Specification

Additional concepts

- » Authorized partition
- » Synchronization on external interrupts
- » Zero copy IPC
- » Virtualized interrupts

Basic Time and Space Partitioning concepts

Space partitioning

- » Using hardware MMU to enforce memory segregation
- » Memory areas authorized (or not) by configuration at design time
- Time partitioning
 - » Cyclic Scheduling plan
 - » Major Frame (MAF)

MAF

- Inter-partition communication
 - » Queuing ports
 - » Sampling ports

Authorized partition

Special rights granted

- Start/stop/restart a partition **》**
- Change scheduling plan **>>**
- Access the mode of a partition **》**
- Read access to the configuration of all ports **》**
- Read access to the Health monitoring logs **》**

Benefits

- Allow centralized FDIR in a partition **》**
- Avoid complexity for the configuration of kernel services **》**
- Transfer of Health Monitoring event log to ground segment **》**

Synchronization on external interrupt

Feature

- » Avoid desynchronization after some time
- » Small jitter window need to be handled by kernel

Benefits

- » Resynchronization of on-board time with ground and equipments
- » Very precise signal if PPS from GPS is used

Zero copy inter-partition communication

- Extended requirement
- Benefits
 - » Avoid copying three times the message to exchange
 - » Useful for large messages

• Write sequence

- » On request kernel provides a memory buffer address
- » The partition writes its data in the memory buffer in user mode
- » The partition informs the kernel the writing operation is finished

Read sequence

- » On request kernel provides a memory buffer address
- » Partition reads the data from the buffer
- » The partition informs the kernel the reading operation is finished

Virtualized interrupts

External interrupts allowed

- » During the execution of the authorised partition
- » Only through virtual interrupts (kernel service)
- » No access to the actual hardware registers
- Integrator responsibility to avoid interrupt sharing
- » Each partition can mask/unmask/clear interrupts

Extended interrupts

- » Created by the kernel
- » Avoid polling communication ports
- » Extended requirement

Evaluation of compliance from existing kernels

Evaluated separation kernels

- » Xtratum from FentiSS
- » PikeOS from SYSGO
- » AIR from GMVIS

Compliance to

- The requirement baseline **》**
- » ECSS E40 and Q80

Auto evaluation by kernel suppliers

- Not possible to cross check for closed source hypervisors **》**
- Partially cross checked for Xtratum as it is open source **>>**

Results provided under NDAs

Phase 2: Qualification Approach

Specify a Qualification Strategy and Plan

» Qualification to Category B Software

Explore Methods and Techniques

- » Classical Methods
- » Model Based Testing
- » Formal methods
- Specify a Test Plan

Qualification objectives:

Objective is to provide adequate confidence to the customer and to the supplier that the PK software satisfies its requirements throughout the system lifetime.

Qualification strategy:

- » Analysis of the ECSS standards
 - > ECSS-E-ST-40C
 - > ECSS-Q-ST-80C
- » Analysis of qualification/certification process in other domains
- » Definition of the qualification perimeter
- » Definition of a quality model
- » Definition of a Test Plan
- » Definition of the Qualification Plan
- » ITT requirements :
 - > Qualification criticality level B (ECSS)

• Partitioning Kernel Qualification perimeter:

17

ISYS

Partitioning Kernel Qualification credits

SYS

Quality Model

- Derived and tailored from ECSS-Q-HB-80-04A, March 2011, Space Product Assurance Handbook
- Example of applicable metrics: V&V coverage, Adherence to coding standards, Suitability of development documentation, code complexity metrics, Process Assessment, ...
- Example of non-applicable metrics : efficiency metrics, reliability metrics, Project Management effectiveness, ...

 Qualification of existing PK software in the frame of ECSS standards

- » For software products whose life cycle data from previous development are not available and reverse engineering techniques are not fully applicable, the following methods are applied:
 - I. generation of validation and verification documents based on the available user documentation (e.g. user manual) and execution of tests in order to achieve the required level of test coverage;
 - > 2. use of the product service history to provide evidence of the product's suitability for the current application.

SPEC Method improvement

If additional development are required to upgrade the PK to reach compliance to [D02] prior the qualification, it should be done according to ECSS process unless modification impact less than 20% of the code. In this case, the Software Reuse File approach is followed.

» Safety assessment

- A dependability analysis for aspects related to time and space partitioning shall be performed.
- This provides inputs to System and Software Safety assessment) when PK is used in a project.

Qualification Process overview

SCISYS

Qualification Process overview: new target board

Model Based Testing techniques and Investigations

State of the art:

- Test generation from behavioural model of the system **》**
- Test script (code) generation from models of the tests (abstract **》** test specification).

Proposed approach

- Capture the System Under Test interfaces as models **>>**
 - PK API >
 - HW platform interfaces
- Propose a formal Abstract Test Specification language **>>**
 - Textual syntax
 - Reference to the models by names
- Elaborate a test script production process **》**
- Identification of expected benefits **》**

Model Based Testing techniques and Investigations

Model Based Testing techniques and Investigations

Expected Benefits

- Test specification is aligned with system high level specification **》**
- Test scripts development effort saving **>>**
- Test scripts aligned with test specification **>>**
- 3 PKs to test from a unique test plan **》**
- Easier to adapt to a new target platform / CPU architecture **》**

Pre-requisite:

Tooling ! **》**

Test Plan

- Generic Test plan (not PK specific)
- Single Core requirements only
 - » Core and Extended
- 117/132 Requirements are validated by test
 - » 15 by Review & Inspection
- SW Under test is PK and its Configuration, therefore 2 types of test:
 - » Execution of PK test
 - » Configuration tests (allowed/not allowed)
- 37 Tests Specified

Types of Tests

Validation of Requirements

Fault Injection Tests

- » Invalid API errors
- » Configuration Errors

Load/Stress Tests

- » Worse case configuration
- » Long duration

Robustness Tests

- » Handling of exception traps
- » Partition Overrun

Time and Space Partitioning Requirements

- » Fault Tree Analysis performed
- » Failures Tested or by Inspection/Review performed

Space Partitioning Analysis

SCISYS

Time Partitioning Analysis

SCISYS

Phase 3: Case Study

- The Objectives were to:
 - » Define the Environment
 - » Define all Test Artefacts
 - » Explore benefits and limitations of selected methods:
 - > By Executing a subset of the test plan

SW Under Test Context

Test Environment

- Test Target is:
 - » LEON2 or LEON3FT (both with MMU)
 - » Particular Processors identified:
 - > SCOC3
 - > UT699
 - > COLE

LEON2 & 3 processors which have non-intrusive Debug Support Unit (DSU).

- » Full access to all processor registers (e.g. PSR, TBR, ITP, etc.);
- » Full access to AMBA bus memory;
- » Breakpoint management;
- » Instruction level run control (break, step, continue etc.)

Java Environment for Test Harness

» Test Agent in C

• Bare Partition (no Guest OS).

Test Setup

Test Cases

- Test Target was Xtratum
- Case 1 : Test Environment Checkout;
- Case 2 : Memory Access test;
 - » Demonstrates the memory permissions for each region.
 - » Test the MMU configuration using a DSU command

Case 3 : Context switch test;

- » Demonstrate test of context save and restore
- » Demonstrate low level break-pointing and control using DSU
- The experimentation was performed on an emulator but the test environment has been designed to allow all the tests to be executed on the hardware.

Memory Access Test

DSU can interrogate the memory status of all 4KB pages

Context Switch Test

- Most registers need to be included in context
- Registers read and then compared
- Halting processor at precise time difficult.
 - Breakpoint set on Xtratum function
- Unexpected behaviour when floating point registers restored

Case Study Results

- Test approach proposed in Test Plan is feasible;
- 11 Test techniques identified and 8 techniques were experimented
- The test environment has been demonstrated;
- Use of DSU helps porting between different boards;
- Access to source code important.
- Updates to test plan from lessons learnt during case study

Conclusion

- Partition Kernel Requirements Baseline defined
 - » Specific for needs for European Space
- Plan and Strategy for Qualification Approach Defined
- Test Plan and Test Environment defined
- Case study on a subset of the Tests performed.
 - » The validation approach and techniques are feasible

Next Steps

- Qualification of one or more PK (Xtratum, PikeOs, AIR)
- Explore/prototype tools to apply FM/MBT for other kind of software parts (ASW, EP, ...)
- Consolidate requirement baseline for multi-core processors
- Extend qualification strategy/plan and test plan to multi-core processors

Any Questions?

Mark Hann

SCISYS UK Ltd Clothier Road, Bristol BS4 5SS. UK

Direct: +44 1179 916 5144

mark.hann@scisys.co.uk www.scisys.co.uk

Fabrice CROS Alexandre Cortier

Airbus Defence and Space T: +33 56 219 8203 Fabrice.CROS@airbus.com Alexandre.CORTIER@airbus.com

Régis De Ferluc

Thales Alenia Space France T: +33 49 228 9945 regis.deferluc@thalesaleniaspace.com

ESA TO⁻ Maria Hernek Maria.Hernek@esa.int

Julien Galizzi CNES T: +33 561281515 Julien.Galizzi@cnes.fr

Andrew Butterfield

Trinity College, University of Dublin T: +353 1 896 2517 Andrew.Butterfield@scss.tcd.ie

ISYS

