
10/06/2016 © Lero 2015 1

Formal Methods Expert to IMA-SP Kernel Qualification
– Preparation

9th June 2016

Andrew Butterfield

Formal Methods Expert to IMA-SP Kernel Qualification – Preparation
ESTEC Contract No 4000112208

10/06/2016 © Lero 2015 2

Formal Methods Expert for IMA-KQP

Formal Methods expertise
– provided by Lero@TCD

– How might formal methods and techniques assist in a kernel
qualification activity?

• complementing traditional techniques?

• replacing traditional techniques?

• Supporting traditional techniques?

Builds on Lero@TCD experience with earlier MTOBSE
activity

10/06/2016 © Lero 2015 3

workflow

FMEIMAKQP matched the IMAKQP Phases

Phase 1 Requirements

– Assisting with baseline development

Phase 2 Planning

– Identify how/what to formalise

– Support Airbus in their FM planning activites

Phase 3 Case-Study

– Carry out some formalisation explorations

– Support Airbus in their FM case-study activities

Phase 4 Report

10/06/2016 © Lero 2015 4

Focus

Limited the scope to requirements involving interrupt handling.
– the behaviour, timing and unpredictability of interrupts meant testing could

be difficult.

Two case studies
– Lero@TCD: using process algebra to model essential concurrency in the

system (high-level)

– Airbus DS: using the Frama-C tool to verify selected XtratuM hypercalls (low
level)

Also some exploratory high-level modelling of Requirements with
an emphasis on key Data Invariants

10/06/2016 © Lero 2015 5

Unavoidable Concurrency
– even with Single-Core!

In a single-core system, the CPU is time-shared between the hypervisor and partition code
with no parallelism.

Flow control change is managed via traps (exceptions, interrupts, …).

However, we have an essentially concurrent system
CPU executes instructions in a sequential
manner on behalf of either the kernel or
partition

Memory (MEM) responds to CPU memory
requests

The MMU/MPU observes the bus traffic,
raises memory fault interrupts when
appropriate

IO Devices (DEV) signal via interrupt when
done

Interrupt request hardware (IRQ) takes in
interrupt requests from
MMU/MPU/DEV/CPU and forwards the
highest in priority to the CPU

10/06/2016 © Lero 2015 6

Concurrency Tool Support
(with Kevin Hennessy, TCD)

Notation: Communicating Sequential Processes (CSP)

Tool: FDR3 (Failures/Divergences Refinement).

 Models:

– Concurrent Hardware behaviour

– Kernel and Partition Software Behaviour

– Requirements of interest.

Analysis:

– FDR3 is a Model (Refinement) Checker

– Deadlock can be represented as a refinement property.

– Model Requirements as behaviour that deadlocks if violated.

10/06/2016 © Lero 2015 7

CSP Model of MMU

Synchronise with
global clock (tick)

Accepts bus read or
write (bus?dir?addr)

Permits operation if
address not blocked
(blocked, mmuOK)

Objects if address is
blocked
(blocked,badaccess
,raise!memfault)

10/06/2016 © Lero 2015 8

Platform as parallel components

Components run in parallel with common events on which they must agree

The platform model should be deadlock-free

Kernel and requirement models in parallel with the platform should also be deadlock-
free

10/06/2016 © Lero 2015 9

Expected Benefits:

Help understand the relevant interactions between the relevant
fragments of kernel code.
– Want to determine the appropriate pre- and post-conditions.

The validated CSP models will give a high-level “shape” to
specifications required at a lower level for code verification.

The FDR3 tool can generate graphs showing the extent of non-
deterministic interleaving of events
– Can assist in ensuring full coverage by both formal and test-based

verification techniques.

10/06/2016 © Lero 2015 10

Challenges:

CSP models very quickly get too large for the tools to handle.

– FDR3 supports model-checking in the cloud to help mitigate this
problem

Very careful abstraction is required to minimise state size,
while retaining modelling accuracy.

Hardware model needs to be configurable w.r.t.
requirements so only the state specific to a requirement is
used.

10/06/2016 © Lero 2015 11

Verifying Kernel Code
(supporting Alexandre Cortier, ADS)

Notation: ANSI C Specification Language (ACSL)

Tool: Frama-C

Approach:
– Property annotations (ACSL) using special comments

– Pre/Post Conditions, Invariants (Data and Loop)

Analysis:
– Weakest Precondition Analysis

– Semi-automatic entailment checking.

– Full theorem prover available if required.

10/06/2016 © Lero 2015 12

Hypercalls

used by partitions to call for kernel services.

– invoked using a TRAP instruction

– kernel-installed handler is executed,

– Handler checks for the appropriate permission before delivering the
requested service.

Focus on two hypercalls in the XtratuM sources:
– SuspendPartition

– SwitchSchedulePlan … we shall look at this one

10/06/2016 © Lero 2015 13

Defining the hypercall table entry

blah

10/06/2016 © Lero 2015 14

Argument Checking

b

10/06/2016 © Lero 2015 15

Formalisation challenges

We need to identify:
1. What these hypercalls actually do

2. What data they need to perform their task

3. Where and how they actually get invoked.

Things we didn’t have
– Design documentation (architecture, data type design and functional

call graphs)

– Access to the kernel developer expertise regarding the code and its
interdependencies.

We did make some progress

10/06/2016 © Lero 2015 16

Results

blah

10/06/2016 © Lero 2015 17

Unexpected challenge

A number of baseline requirements were selected in advance as possible
candidates for formal verification

– Criterion: they looked like they might be hard to test.

– These led to the choice of hypercalls that were looked at in detail.

The parallel testing activity uncovered a requirement not in the above list that
proved hard to test

– PK-9: When a partition is resumed by the partitioning kernel at the beginning of its
timeslots, the said partition shall restart in the same memory context (memory allocated
to the partition), CPU core registers context and FPU context (if FPU is used by the
considered partition).

Targeting the formal verification of this requirement would be an interesting
next step.

10/06/2016 © Lero 2015 18

Results

Small consultative and exploratory activity

High-level modelling helps to “frame” the verification task

– Exposing essential concurrency, while avoiding that which is irrelevant

Low level annotations can work

– But connection to top-level is non-trivial

– Need a semantic bridge between C data and kernel concepts

• This requires the modelling of the kernel Data-Invariants at both the Requirements and Code levels.

– Really need “domain experts” involved
 - the software developers !

10/06/2016 © Lero 2015 19

Possible Future Investigations

Kernel-related

– Formal Model of Requirements Baseline

• Formal Model of Data Invariant

– Investigate requirements-to-code verification of PK-9 Context Switching

• requires top-to-toe infrastructure, which can be re-used for other requirements

General On-Board Software

– High-level Formal Models to verify consistency and other desired semantic properties

• This is the “sweet-spot” for current formal method techniques

– Reference Architecures/Specifications/Data Models/Interface
Standardisation/Protocols

10/06/2016 © Lero 2015 20

Any Questions?

Andrew Butterfield
Lero @ Trinity College Dublin
Andrew.Butterfield@lero.ie

ESA TO: Maria Hernek
Maria.Hernek@esa.int

Mark Hann
SCISYS UK Ltd
mark.hann@scisys.co.uk

Fabrice Cros, Alexandre Cortier
Airbus Defence and Space
Fabrice.CROS@airbus.com
Alexandre.CORTIER@airbus.com

mailto:Andrew.Butterfield@lero.ie
mailto:Maria.Hernek@esa.int
mailto:mark.hann@scisys.co.uk
mailto:Fabrice.CROS@airbus.com
mailto:Alexandre.CORTIER@airbus.com

	Slide Number 1
	Formal Methods Expert for IMA-KQP
	workflow
	Focus
	Unavoidable Concurrency �– even with Single-Core!
	Concurrency Tool Support �(with Kevin Hennessy, TCD)
	CSP Model of MMU
	Platform as parallel components
	Expected Benefits:
	Challenges:
	Verifying Kernel Code �(supporting Alexandre Cortier, ADS)
	Hypercalls
	Defining the hypercall table entry
	Argument Checking
	Formalisation challenges
	Results
	Unexpected challenge
	Results
	Possible Future Investigations
	Any Questions?

