
Parallel Programming Models for Space Systems

Exploiting the performance of current multi-core processors (e.g.NGMP) requires the usage
of appropriate parallel programming models. Such a requirement is further exacerbated
with the advent of next-generation many-core heterogeneous embedded architectures (e.g.
Kalray MPPA), in which parallel programming becomes mandatory to exploit the massive
parallel computation capabilities. OpenMP, the de-facto standard for shared memory
architectures in the high performance domain, is increasingly being considered in the
embedded domain. Originally focused on massively data-parallel, loop-intensive
applications, the latest specification of OpenMP (version 4.5) has evolved to consider a very
sophisticated tasking model supporting fine-grained and irregular parallelism. Moreover, it
also incorporates new features to couple a main host processor to one or more many-core
accelerators, where highly parallel code kernels can be offloaded for improved
performance/watt.

Our vision is that OpenMP is an excellent choice for current and future real-time embedded
systems for a twofold reason: First, it provides the abstraction level required to program
parallel applications, while hiding the complexities of multi- and man-ycore architectures.
Second, it facilitates the migration of real-time embedded systems from multi- core to
many-core platforms. Unfortunately, OpenMP adopts a parallel execution model that differs
in many aspects from the real-time execution model: The programming interface and the
runtime scheduler are completely agnostic to any timing requirement that the target
application may have. Moreover, current implementations of OpenMP are not designed for
embedded environments in which the execution is constrained by hardware resources,
operating systems (OS) or application requirements.

In the "Parallel Programming Models for Space Systems” project, we evaluated the use of
OpenMP in the space domain with a twofold objective. First, to demonstrate the benefits of
using OpenMP4 in terms of: performance speed-up, programmability and time analysability.
Second, to identify the challenges that future implementations of OpenMP must address, by
evaluating the implications of using OpenMP in terms of system resources, i.e. memory
footprint, operating system services and size of application memory working set.

