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Literature Survey 
• No FDIR scheme exists that 

specifically targets multi-FPGA 
systems. 

• No availability analysis  
method exists for such an  
FDIR scheme, which also takes  
Block RAMs into account. 

• Is on its own a novel  
contribution to knowledge. 

• Together with the included  
design recommendations, it  
can serve as a tutorial for both  
scientists and engineers who  
are novices in this field. 

 

 



Distributed Failure Detection 
• Data is independently  

processed by “stream  
processors”. 

• Data is provided via a  
Network-on-Chip (NoC)  

• Based on modular redundancy  
+ voting/comparison: 

• Allows a real FDIR approach. 

• Allows the distribution of redundant stream processors over several 
FPGAs. 

• Redundant processors can be added / removed during operation, 
depending on the criticality of the current mission phase. 

 



Distributed Failure Detection 
• Intercommunication is done via a 

switched fabric NoC architecture. 

• Failure detection and isolation 
mechanisms are embedded into  
NoC switches. 

• Compared to the state of the art,  
this approach scales much better  
with the size of the application. 

• Can easily be applied to  
multi-FPGA systems. 

• Is well suited for high-performance 
payload data processing. 

 



Distributed Failure Detection 
Example application and 
network topology: 

 



Availability Analysis Method 
Question: Which failure rates do we have to expect for a stream 
processor in a specific FDIR configuration in a specific radiation 
environment? 
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Availability Analysis Method 
Step 1: SEU Rate Calculation / Determination of MTBF 

• Cross-sections (as provided e.g. from  
Xilinx/NASA) can be used to calculate  
the failure rates for a particular stream  
processor design in a particular orbit /  
radiation environment. 

• Tools like OMERE simplify the  
computation according to ECSS  
standards. 

 



Availability Analysis Method 
Step 2: Block RAM Profiling 

• Main novelty: Block RAM profiling 
tool. 

• Allows a much better estimate of the 
number of susceptible Block RAM 
bits. 

• It therefore increases the overall 
prediction precision of MTBF and 
availability figures. 

 



Availability Analysis Method 
Step 3: Fault Injection Experiments 

• Second novelty:  
Fault injection algorithm. 

• Can classify sensitive bits  
depending on how a system  
can recover from failures  
triggered by upsets in  
these bits. 

• Allows more advanced  
availability models. 
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Availability Analysis Method 
Random fault injection can provide accurate results 

• SEU rate per bit-day is known. Thus, we need to determine the 
number of sensitive configuration memory elements. 

• Random fault injection preferred, full campaign would take too much 
time.  

# Tested # Sensitive 95% confidence interval 

1,000 134 11.35% 15.67% 

10,000 1,382 13.15% 14.51% 

100,000 13,899 13.69% 14.11% 

150,000 20,870 13.74% 14.09% 

3,735,264 523,543 14.02% 

Random fault injection can provide accurate estimates! 

 



Availability Analysis Method 
Step 4: Stochastic modelling to determine availability for different 
redundancy configurations (Duplication with comparison, TMR) 

• The steady-state availability gives an indication of how much 
downtime must be expected. 

• It is also a good figure to compare different FDIR approaches. 

• Stochastic Petri nets are used for modelling, which can analytically 
be solved by the TimeNET tool. 

Mission DWC TMR 

Sentinel-3 0.999996 0.999999999...  

Sentinel-3 (SPE) 0.998 0.9999998 

Galileo 0.999998 0.999999999...  

Galileo (SPE) 0.995 0.999998 

 



Demonstration System 
• Complex demonstration system 

comprising hardware, embedded 
software and workstation software 
components. 

• Very similar to flight systems since 
most components are available as 
space-qualified versions. 

 



Proton Irradiation Test Campaign 
Validation of both FDIR Hardware Framework and Availability 
Analysis method. 

• Test campaign was conducted at PSI. 

• Three experiments:  
– 4.2E+06 p/cm2-s @ 200 MeV 
– 8.3E+06 p/cm2-s @ 200 MeV 
– 8.5E+06 p/cm2-s @ 100 MeV  

• DUT: Virtex-4 SX55. 
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Proton Irradiation Test Campaign 
First interesting outcome: Static cross-sections also gained 
during dynamic testing by reading back the bitstream after 
each failure detection. 

Experiment Fluence1 Runtime SEUs X-Section / bit2 

200 MeV /A 3.82E+10 9,176 s 10,728 1.83E-14 

200 MeV /B 2.67E+10 3,207 s 7,472 1.83E-14 

100 MeV 3.42E+10 4,028 s 8,052 1.54E-14 

Cross-sections: Configuration memory 

Experiment Fluence1 Runtime SEUs X-Section / bit2 

200 MeV /A 3.82E+10 9,176 s 6,225 3.69E-14 

200 MeV /B 2.67E+10 3,207 s 4,290 3.64E-14 

100 MeV 3.42E+10 4,028 s 4,808 3.19E-14 

Cross-sections: Block RAMs 
1 [p/cm2] 
2 [cm2/bit] 

 



Proton Irradiation Test Campaign 
Dynamic Test Results #1 (@ 200 MeV) 

• Measured during beam test: 
– Failures detected and recovered: 439 
– Average proton flux: 4.16E+06 p/cm2-s 
– Average Mean Time Between Failures (MTBF): 20.23 sec  

• Estimation: 

 

 

 

• Error: 9.7% 

 



Proton Irradiation Test Campaign 
Dynamic Test Results #2 (@ 200 MeV) 

• Measured during beam test: 
– Failures detected and recovered: 343 
– Average proton flux: 8.31E+06 p/cm2-s 
– Average Mean Time Between Failures (MTBF): 9.147 sec  

• Estimation: 

 

 

 

• Error: 0.4% 

 



Proton Irradiation Test Campaign 
Dynamic Test Results #3 (@ 100 MeV) 

• Measured during beam test: 
– Failures detected and recovered: 309 
– Average proton flux: 8.48E+06 p/cm2-s 
– Average Mean Time Between Failures (MTBF): 12.518 sec 

• Estimation: 

 

 

 

• Error: 15.4% 

 



Proton Irradiation Test Campaign 
Availability Prediction (based on stochastic Petri nets) 

Experiment TX Img RX Img Availability 
200 MeV /A 80,724 77,621 0.9616 
200 MeV /B 28,586 26,266 0.9188 

100 MeV 35,845 33,741 0.9413 
Measured availability during beam test 

Experiment Availability (Error) 
using measured MTBF 

Availability (Error) 
using predicted MTBF 

200 MeV /A 0.9639 (0.2%) 0.9602 (0.1%) 

200 MeV /B 0.9235 (0.5%) 0.9238 (0.5%) 

100 MeV 0.9429 (0.2%) 0.9332 (0.9%) 
Predicted steady-state availability using Petri nets 

 



Proton Irradiation Test Campaign 
Summary: 

 

• It was demonstrated that the proposed FDIR framework 
withstands a real radiation environment. 

• It was shown that the availability analysis method could predict 
the measured MTBF value with a maximum error of 15.4% and 
the availability figure with a maximum error of only 0.9%. 

• Static cross-sections at 200 MeV were measured for the Virtex-4 
SX55 device (NASA/Xilinx documents only provide data up to 60 
MeV). 
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