
Catalogue of System
and Software
Properties (CSSP)

Final Presentation of ESA Contract No. 4000112344/14/NL/FE
ESA/ESTEC, December 7, 2016
Panagiotis Katsaros Simon Bliudze
Aristotle Un. of Thessaloniki (GR) École Polytechnique Fédérale de Lausanne (CH)

Aristotle University of

Thessaloniki

Main objective of the CSSP

¤ A model-based requirements specification approach
in the System & Software Development Lifecycle.

¤ Early discovery and resolution of design correctness
and consistency issues
n verification of design models against formal properties derived

from the requirements

¤ Ultimate Aim:
n  to reduce the high cost of corrective measures applied in the

late phases of the lifecycle.

2/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Requirements, properties & design models

¤ System and software requirements
n  conditions or capabilities in natural language to be met by the

system or a software component under design

¤ Design model
n abstract representation of the “physical” system in a modelling

language with formal semantics

¤ Each requirement can be formally captured by properties:
n  specifications for entities and events of a design model that

constrain the structure and the behaviour of the system; ensure that
the corresponding requirements are properly covered

3/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (natural language requirements)

¤ From the CubETH satellite On-Board software:
A. Mavridou, E. Stachtiari, S. Bliudze, A. Ivanov, P. Katsaros, J. Sifakis. Architecture-based Design:
A Satellite On-board Software Case Study. 13th Int. Conf. on Formal Aspects of Component
Software (FACS 2016), Besançon, France, 2016

n  The CDMS shall have a Housekeeping activity dedicated to each
subsystem (HK-001).

n  When line-of-sight communication is possible, housekeeping information
shall be transmitted through the COM subsystem (HK-003).

n  When line-of-sight communication is not possible, housekeeping information
shall be written to the non-volatile flash memory (HK-004).

n  A Housekeeping subsystem shall have the following states: NOMINAL,
ANOMALY, and CRITICAL_FAILURE (HK-005).

n  If a process failure occurs or if the engineering data are not correct, the
subsystem shall enter the ANOMALY state (HK-007).

n  After MAX seconds in ANOMALY, the subsystem shall enter the CRITICAL_
FAILURE state (HK-008).

4/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): design model in BIP

¤ Design model for the CubETH satellite On-Board software
(only the interactions are shown):

5/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): requirements & properties

¤ Requirements & formal properties in Computational Tree
temporal Logic (CTL) from the CubETH satellite On-Board
software:

n  When line-of-sight communication is possible, housekeeping information shall
be transmitted through the COM subsystem (HK-003).

 AG (HKPL_ask_I2C_TTC � HKPL_PSModeMngment_inState(TTC))

n  When line-of-sight communication is not possible, housekeeping information
shall be written to the non-volatile flash memory (HK-004).

 AG (HKPL_mem_write_req � HKPL_PSModeMngment_inState(MEMORY))

Whether line-of-sight communication is (not) possible depends on the satellite’s
visibility status from the ground.

n  TTC mode: line of sight communication is possible
n  MEMORY mode: line of sight communication is not possible

6/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Verifiability & abstraction levels

¤ Design correctness:
n enforcement of formal properties by construction by applying

known solutions to the design model (architectural patterns)
n a posteriori formal verification of the design model for properties

that cannot be enforced

¤ For the properties to be verifiable, they can refer only to
model elements representing valid entities for the current
development phase.

¤ Different abstraction levels of design along the
development lifecycle (e.g., system, avionics, software).
n Properties at a particular level will have to be consistent.
n Established properties must be preserved at lower abstraction

levels.

7/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

categories comprise

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

categories comprise

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

categories comprise

Requirements

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

categories comprise

stored in

Requirements

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

BIP design model

categories comprise

elementary components found by
querying

stored in

Requirements

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

BIP design model

categories comprise

elementary components found by
querying

stored in

Requirements

whenever request occurs
response occurs
during [0ms,10ms]

Property patterns with
implicit CTL representation

entity states
& events

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

BIP design model

categories comprise

elementary components found by
querying

stored in

Requirements

whenever request occurs
response occurs
during [0ms,10ms]

Property patterns with
implicit CTL representation

entity states
& events

Properties

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

BIP design model

categories comprise

elementary components found by
querying

stored in

Requirements

whenever request occurs
response occurs
during [0ms,10ms]

Property patterns with
implicit CTL representation

entity states
& events

Properties
stored in

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of System & Software Properties (CSSP)

Catalogue of Requirement
Categories
per abstraction level

Boilerplates:
requirement patterns with placeholders for concepts

Knowledge
base with

class instances

CSSP Ontology: explicit specification of a
shared conceptual model of the domain

concepts
mapped to

BIP design model

categories comprise

elementary components found by
querying

stored in

Requirements

whenever request occurs
response occurs
during [0ms,10ms]

Property patterns with
implicit CTL representation

entity states
& events

Properties
stored in

enforce by architecture-based design & verify

8/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Catalogue of Requirement Categories

¤ Guides the engineers throughout the requirements specification
per abstraction level.

¤ Proposed by Thales Alenia Space France based on:
n  the ECSS standard on Technical Requirements Specification
n empirical evidence from reference satellite projects

²  Sentinel 3, which is a LEO Earth Observation satellite
²  Exomars-TGO, a planetary orbiter with specificities regarding

autonomous behaviour and fail-operational modes

¤ Partial classification: only requirements that plausibly influence
at lower level those that are relevant to the OBSW.

9/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Categories at four abstraction levels
10/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Categories at four abstraction levels
10/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Categories at four abstraction levels
10/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

RB level: link
between system
processes &
software
processes -
WHAT is needed

Categories at four abstraction levels
10/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

RB level: link
between system
processes &
software
processes -
WHAT is needed

Software Technical
Specification level:
SW and HW
constraints are taken
into account to
answer the needs
specified at the RB –
HOW

Boilerplates language I

¤ Boilerplates are requirement patterns with placeholders.
n instantiated into requirements by replacing placeholders with

entities appropriate for the particular system context of the
mission under design.

¤ They are used in order to:
n eliminate the fuzzy syntax of natural language specifications
n assign concrete meaning to language constructs in order to

avoid diverse interpretations
(e.g. connective words used to determine time, order/
sequence, consequence, comparison, contrast and various
types of conjunctions)

11/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Boilerplates language II
12/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Boilerplates language II
12/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Boilerplates language II
12/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Boilerplates language II
12/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Requirement categories & boilerplates

¤ Empirical knowledge from the RB-level of Sentinel 3
13/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP Ontology I

¤ Encodes the conceptual model of the system’s domain and
the specification language.
n logical relationships and facts for the concepts

¤  It is used to:
n avoid indeterminate references (dictionary)
n capture implicit knowledge in requirement specifications
n search into and validate the specifications by ontology-based

reasoning
n retrieve the relevant information for the subsequent modelling

activities

14/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP Ontology II

¤ Concepts organized into sub-ontologies with well-defined
scope: Ontology Engineers know where to apply the needed
changes.
n Ontology of System & Software Attributes (OoSSA)
n Domain Specific Ontology

(DSO)
n  Requirement Boilerplates (RBLP)
n  Property Patterns (PRP)

¤  Logical (rule-based) reasoning
can infer implicit relationships
between system/software
entities and requirements.

15/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): requirement formalization
Boilerplate-based representation in the CSSP ontology:

n  An abstract requirement refers to an abstract entity (class) and implies that
the requirement should be fulfilled for all instances of this abstract entity.

16/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

If line-of-sight communication is possible, the
housekeeping activity transmits information
through the COM subsystem (HK-003).

Example (contd): requirement formalization
Boilerplate-based representation in the CSSP ontology:

n  An abstract requirement refers to an abstract entity (class) and implies that
the requirement should be fulfilled for all instances of this abstract entity.

16/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

If line-of-sight communication is possible, the
housekeeping activity transmits information
through the COM subsystem (HK-003).

Example (contd): requirement formalization
Boilerplate-based representation in the CSSP ontology:

n  An abstract requirement refers to an abstract entity (class) and implies that
the requirement should be fulfilled for all instances of this abstract entity.

16/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

If line-of-sight communication is possible, the
housekeeping activity transmits information
through the COM subsystem (HK-003).

¤ Implemented SPARQL queries:

n Check that there are no missing concrete requirements.

n Find entities for which no requirements have been specified.

n Find entities that do not appear as subject in the specified
requirements.

n Check for inconsistent requirement specifications with
contradictory parts.

Ontology-based Validation
17/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Property patterns language I

¤ Property patterns: formalism-independent specification
abstractions, an input mechanism to capture properties:
n  in terms of events and state variables of some design model
n associated with implicit formal representations in a logic language

¤ Property patterns for properties:
n  that can be enforced by design, i.e. there is available design

solution
n  that should be specified in a verifiable form (CTL specification

amenable to model checking)

18/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Property patterns language II

¤ Patterns for property specifications in a verifiable form:

 e.g. Whenever telecommand acquisition fails, then a telemetry anomaly
 report shall be generated.

¤ Patterns for mode management properties (enforced by design):

19/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Behaviour-Interaction-Priority (BIP)

¨  Components
¤  state machines

¨  Coordination
¤  synchronisation
¤  defined by

connectors

¨  Language

¨  Analysis

¨  Code
generation

20/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Architecture-based design

¨  Assumed property
¤ Not in the critical

section after finish

¨  Enforced property
¤ Mutual exclusion

Catalogue Of System & Software Properties
ESA AO/1-7785/14/NL/FE Final Report

takenwork work

sleep free sleep

f1 b12 f12 b2 f2b1

B1 C12 B2

f1 b12 f12 f2b1 b2

Figure 19: Mutual exclusion model in BIP

is a tuple of valuations of variables such that vi 2 Val(Xi) = {� : Xi ! D}, for all i = 1, . . . , n and
for D being some universal data domain.

The behavior of a composite component C = �(C1, . . . , Cn) is defined as a labelled transition
system over the set S of global states of C and the transition relation with the following seman-
tics: C can execute an interaction a 2 �, i↵ (i) for each port pi 2 Pa , the corresponding atomic
component Ci allows a transition labelled by pi (i.e. the corresponding guard gi evaluates to true),
and (ii) the guard Ga of the interaction evaluates to true. If these conditions hold true for an
interaction a at state (q, v), then a is enabled at that state. Execution of a modifies participating
components’ variables by first applying the data transfer function Fa on variables of all interacting
components and then the update function fi for each interacting component. Components that do
not participate in the interaction stay unchanged.

In BIP, interactions between components are specified by connectors. A connector defines a set
of interactions based on the synchronization attributes of the connected ports (Figure 18i), which
may be either trigger or synchron:

• if all connected ports are synchrons, then synchronization is by rendezvous, i.e. the defined
interaction may be executed only if all the connected components allow the transitions of
those ports (Figure 18ii),

• if a connector has one trigger, the synchronization is by broadcast, i.e. the interactions are all
non-empty subsets of the connected ports with the trigger port (Figure 18ii).

Connectors can export their ports for building hierarchies of connectors (Figure 18iii). Data
variables can be used in order to compute transfer functions associated with interactions. Com-
putations take place iteratively either upwards (up) or downwards (down) through the connectors’
hierarchy levels, but computed values are not stored between the execution of two interactions
(connectors are stateless).

Figure 19 shows a simple BIP model for mutual exclusion between two tasks. It has two
components B1, B2 modelling the tasks and one coordinator component C12. Initial states of the
components are shown with double lines. The four binary connectors synchronise each of the actions
b1, b2 (resp. f1, f2) of the tasks with the action b12 (resp. f12) of the coordinator.

4.2 Architecture-based design approach

A (formal) architecture can be viewed as a BIP model, where some of the atomic components
are considered as coordinators, while the rest are parameters. When an architecture is applied

59

Catalogue Of System & Software Properties
ESA AO/1-7785/14/NL/FE Final Report

taken

free

f1 b12 f12 b2 f2b1

C12

b12 f12

Figure 20: Mutual exclusion architecture

Modelling
architecture

styles

Requirements
formulation &
formalisation

Pre-design Design

Architecture
application

Model
verification

Verification

Figure 21: Architecture-based design flow

to a set of components, these components are used as operands to replace the parameters of the
architecture. Clearly, operand components must refine the corresponding parameter ones—in that
sense, parameter components can be considered as types. Figure 20 shows an architecture that
enforces the mutual exclusion property AG¬(cs1 ^ cs2) on any two components with interfaces
{b1, f1} and {b2, f2}, satisfying the CTL formula AG

�
fi ! A[¬csi W bi]

�
, where csi is an atomic

predicate, true when the component is in the critical section (e.g. in the state work, for B1, B2 of
Figure 19). Composition of architectures is based on an associative, commutative and idempotent
architecture composition operator ‘�’ [9]. If two architectures A1 and A2 enforce respectively safety
properties 1 and 2, the composed architecture A1 � A2 enforces the property 1 ^ 2, that is
both properties are preserved by architecture composition.

Although the architecture in Figure 20 can only be applied to a set of precisely two components,
it is clear that an architecture of the same style—with n parameter components and 2n connectors—
could be applied to any set of operand components satisfying the above CTL formula. We use
architecture diagrams [32] to specify such architecture styles, as described in the next section. (See
Figure 22 in Section 4.3.1 for the diagram of the style generalising the architecture in Figure 20.)

The architecture-based design approach consists of the three stages illustrated in Figure 21.
First, architecture styles relevant for the application domain are identified and formally modelled.
Ideally, this stage is only realised once for each application domain. The remaining stages are
applied for each system to be designed. In the second, design stage, requirements to be satisfied by
the system are analysed and formalised, atomic components realising the basic functionality of the
system are designed (components previously designed for other systems can be reused) and used as
operands for the application of architectures instantiated from the styles defined in the first stage.
The choice of the architectures to apply is driven by the requirements identified in the second stage.
Finally, the resulting system is checked for deadlock-freedom. Properties, which are not enforced
by construction through architecture application, must be verified a posteriori.

60

AG¬(cs1 ^ cs2)

AG
�
fi ! A[¬csi W bi]

�

21/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): Building blocks
¤  From the CubETH satellite On-Board software:

n  The CDMS shall have a Housekeeping activity dedicated to each
subsystem (HK-001).

n  When line-of-sight communication is possible, housekeeping information
shall be transmitted through the COM subsystem (HK-003).

n  When line-of-sight communication is not possible, housekeeping
information shall be written to the non-volatile flash memory (HK-004).

TCTM
transmit

HK_*

send

Mem
success
fail

write_req

22/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): Client-server
¤  From the CubETH satellite

On-Board software:
n  When line-of-sight

communication is possible,
housekeeping information
shall be transmitted through
the COM subsystem
(HK-003).

n  When line-of-sight
communication is not possible,
housekeeping information
shall be written to the non-
volatile flash memory
(HK-004).

HK_*

send

TCTM
transmit

Mem
success
fail

write_req

23/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): Mode management

¤  From the CubETH satellite On-Board software:
n  When line-of-sight communication is possible, housekeeping information

shall be transmitted through the COM subsystem (HK-003).
n  When line-of-sight communication is not possible, housekeeping

information shall be written to the non-volatile flash memory (HK-004).

HK_*
send

LSMode
inNoLS

inLS

LSNoLS
toLS

toNoLS

inNoLS inLS

toNoLS toLS

Mem

success
fail

write_req

TCTM
transmit

success

fail

Failure Monitor

success

failure
AnomalyNominal

failure

success

Critical
failure

timeout

timeout

Timer

start

timeout
count
downwait

start
t := MAX

timeout
[t = 0]

24/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Example (contd): Failure management

¤  From the CubETH satellite On-Board software:
n  A Housekeeping subsystem shall have the following states: NOMINAL,

ANOMALY, and CRITICAL_FAILURE (HK-005).
n  If a process failure occurs or if the engineering data are not correct, the

subsystem shall enter the ANOMALY state (HK-007).
n  After MAX seconds in ANOMALY, the subsystem shall enter the CRITICAL_

FAILURE state (HK-008).

HK_*
send

LSMode
inNoLS

inLS

LSNoLS
toLS

toNoLS

inNoLS inLS

toNoLS toLS

Mem

success
fail

write_req

TCTM
transmit

success

fail

Failure Monitor

success

failure
AnomalyNominal

failure

success

Critical
failure

timeout

timeout

Timer

start

timeout
count
downwait

start
t := MAX

timeout
[t = 0]

25/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Taxonomy of architecture styles

¨  9 architectures identified through case studies
¤ Mutual exclusion
¤ Client-server
¤ Action flow
¤ Action flow with abort
¤ Failure monitoring
¤ Mode management
¤ Buffer management
¤ Event monitoring
¤ Priority management

26/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP Process: High-level view
27/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP Process: Detailed view
28/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP Properties Specification & Verification framework
29/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

CSSP tool
¤  Catalogue-driven

specification guidance
¤  Boilerplate-based

specification of
requirements

¤  Aid to avoid concepts
that are not mapped
to the CSSP Ontology

¤  Semantic search &
validation of
requirement/property
specifications

¤  Guidance for
specification of (i)
enforceable and (ii)
verifiable properties

30/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

¤  Pattern-based specification of properties
¤  Correctness-by-construction through BIP model transformations that enforce specified properties

Case studies

¤ CubETH satellite On-Board software (internal consortium study)
n 36 requirements were covered by 38 enforceable properties
n  To increase the confidence in the architecture-based design approach,

additional verification was conducted using the nuXmv tool.

¤ Sentinel 3 Telecommand Management function (provided by
Thales Alenia Space)
n Aim: to validate the CSSP process and framework of tools
n 27 RB-level requirements covered by 34 properties (2 verifiable

properties)

n  The burden of verification is shifted from the final design model to
architectures, which are considerably smaller in size and can be reused.

31/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

² State explosion for the complete model
² Properties were shown to hold for the subsystems
² They also hold for the complete model (sound abstraction)

Conclusions

¤ The design model:
n means to ensure design correctness
n requirements that cannot be enforced & verified have to be

refined
Ø  inconsistencies due to specification errors or due to an overly

weak assumption for the environment of the involved entities
n baseline for formal design refinement to introduce new

requirements (and properties) at a lower abstraction level
Ø  two more properties + action refinement are formally checked

to ensure consistency

¤ Software properties (TS-level) are allocated on a BIP
model of the software component architecture (OSRA) –
specifies the software components behaviour.

32/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Future work

¤ Defining domain models within the DSO to enable effective
ontology-based validation.
n  system and software engineers experienced in diverse types of missions

(currently working for the AOCS)
n  need to encode various types of implicit assumptions:

Ø  general, e.g. mass cannot be negative
Ø  mission specific, e.g. the temperature within the orbiting range

cannot rise above N degrees
¤ Further develop the existing BIP model of the software

component architecture to enable model-based code
generation:
n  static architecture (OSRA)
n dynamic architecture (Ravenscar + semaphore-based task

synchronization)
¤  Improve the tool support to achieve a higher TRL.

33/34

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

http://www.researchgate.net/project/Catalogue-of-System-and-Software-Properties

Contact: katsaros@csd.auth.gr

Catalogue Of System & Software Properties
ESA/ESTEC - Dec. 7, 2016

Aristotle University Of Thessaloniki - Greece
• Panagiotis Katsaros, Prof.
• Nick Bassiliades, Prof.
• Ioannis Vlahavas, Prof.
• Ioannis Stamelos, Prof.

• Emmanouela Stachtiari, PhD student
• Manolis Rigas, PhD student
• Alexandros Papageorgiou, Student

École Polytechnique Fédérale de Lausanne - Switzerland
• Joseph Sifakis, Prof.
• Simon Bliudze, Researcher
• Anastasia Mavridou, Researcher

Thales Alenia Space France
• Marco Panunzio, On-board software R&D Engineer

