
Enabling	FDIR	design	through
diagnosability	and	recoverability	analysis

Benjamin	Bittner
bittner@fbk.eu

University	of	Trento	/	Fondazione	Bruno	Kessler

NPI	Final	Presentation - 7/12/2016

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
Conclusion

2

ESA	Networking/Partnering	Initiative	(NPI)

• PhD	at	University	of	Trento	/	Fondazione	Bruno	Kessler	(Trento,	Italy)
• supervisors:	Alessandro	Cimatti and	Marco	Bozzano

• co-financed	by	ESA	through	the	NPI	program
• builds	on	/	inspired	by	other	ESA	projects	(COMPASS,	FAME)

aim:	automated	tools	to	support	formal	FDIR	design

3

Fault	Management	via	FDIR

isolation
recovery

alarms

ob
se
rv
at
io
ns

com
m
ands

detection

fault

system

FDIR

4

• faults	vs.	safety	/	availability
• need	for	fault	management
• classical	paradigm:	FDIR

Effects	of	Faults?	Propagation	Speed?
Timed	Failure	Propagation	Graphs

system

?
?

isolation
recovery

alarms

ob
se
rv
at
io
ns

com
m
ands

detection

FDIR

5

[1,	15]	{C}

• Validation	w.r.t.	system	model?
• Automated	generation?

Can	effective	detection	be	implemented?

Diagnosability	Analysis

system

isolation
recovery

alarms

ob
se
rv
at
io
ns

com
m
ands

detection

FDIR

no	(plus	debugging	info)yes	(plus	optional
reduction	of
observables)

Fault	diagnosable?

6

Automating	verification	and
observables	optimization?

Introduction
Timed	Failure	Propagation	Graphs
• TFPG	formalism
• Behavioral	Validation
• Synthesis
• Implementation	&	Benchmarks
• Case	studies

Diagnosability	Analysis
Conclusion

7

Running	Example:	Industrial	Furnace	Robot

8

Timed	Failure	Propagation	Graphs

Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

failure	modes

9

Timed	Failure	Propagation	Graphs

Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

OR discrepancies

AND discrepancies

10

Timed	Failure	Propagation	Graphs

Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

propagation	delay	bounds

mode	constraints

11

Introduction
Timed	Failure	Propagation	Graphs
• TFPG	formalism
• Behavioral	Validation
• Synthesis
• Implementation	&	Benchmarks
• Case	studies

Diagnosability	Analysis
Conclusion

12

Problem	1:
Behavioral
Validation

13

Is	a	given	TFPG	a	good	
representation	of	the	
system	behavior under	
faults?

Formal	Background

• infinite-state	transition	systems
• sequences	of	states	with	time-stamps

• Metric	Temporal	Logic	(MTL)
• symbolic	model-checking

• exhaustive	exploration	of	all	behaviors

14

S0 S1 S2 S3 …

Trace-based	TFPG	semantics

f_cooling

d_noncrit

t t+5
✓

f_cooling

d_noncrit

✗

Non-
critical
over-
heating

F-locomotion Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

F-cooling

TFPG	constraints	satisfied
on	TFPG	traces?

fault	happens

non-critical
overheating
occurs

15

TFPG	traces	vs.	system	traces

16

TFPG	Behavioral	Validation

Completeness	Property
The	TFPG	abstraction	of	every	system
trace	satisfies	the	TFPG	constraints.

Tightness	Property
Edge	constraints	cannot	be	tightened
without	breaking	TFPG	completeness.

Properties	are	verified	with	model-checking.

Non-
critical
over-
heating

F-locomotion Stuck

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

F-cooling

17

Introduction
Timed	Failure	Propagation	Graphs
• TFPG	formalism
• Behavioral	Validation
• Synthesis
• Implementation	&	Benchmarks
• Case	studies

Diagnosability	Analysis
Conclusion

18

Problem	2:
Synthesis

19

How	to	generate	TFPG
automatically?

TFPG

System	Model

Nodes

TFPG	Synthesis
Non-

criticalo
ver-

heating

F-locomotion Stuck

Critical
over-
heating

F-cooling
Non-

criticalo
ver-

heating

F-locomotion Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

F-cooling

Part	I:	Compute	Graph Part	II:	Compute	tight
edge	constraints

Non-
criticalo
ver-

heating

F-cooling
[0,∞]	{S,C}

Edges	are	maximally	permissive:

20

Step	1:	Compute	Precedence	Constraints

Non-
critical
over-
heating

F-locomotion

Stuck non-critical
overheatingF-locomotion

stuck

F-cooling

non-critical
overheatingF-cooling

21

underlying	analysis	engine:
minimal	cut-set	computation

Step	2:	Instantiate	TFPG
Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

critical
over-
heating

edges	are	labeled	with	tmin=0,	tmax=∞,	modes=ALL
22

Step	3:	Simplification
Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

critical
over-
heating

use	Boolean	reasoning	to	identify	redundant	edges
23

Step	3:	Simplification
Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

critical
over-
heating

remove	unnecessary	auxiliary	nodes

24

Step	3:	Simplification
Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

critical
over-
heating

identify	AND	discrepancies
25

Automated	Tightening

[0,	∞]	{S,C}

based	on	model-checking	iterations
26

Non-
critical
over-
heating

F-cooling

[0,	10]	{C} Non-
critical
over-
heating

F-cooling

Resulting	TFPG

Non-
critical
over-
heating

F-locomotion

F-cooling

Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

27

• is	complete	and	tight
• accurately	encodes	precedence	constraints

Introduction
Timed	Failure	Propagation	Graphs
• TFPG	formalism
• Behavioral	Validation
• Synthesis
• Implementation	&	Benchmarks
• Case	studies

Diagnosability	Analysis
Conclusion

28

model
avg

compl.

time

avg
tighten.

time

TFPGs avg. FM avg. D

acex-10 171 (1.0) 731 (1.0) 15 2 15

acex-12 334 (1.0) 838 (0.9) 33 2 17

autogen 156 (1.0) 925 (1.0) 66 8 15

battery 23 (1.0) 71 (1.0) 23 4 6

cassini2 28 (1.0) 75 (1.0) 15 10 6

cassini4 322 (1.0) 1179 (0.9) 39 16 10

forge-B 103 (1.0) 160 (1.0) 3 2 3

forge-R1 2 (1.0) 10 (1.0) 3 2 3

forge-R2 24 (1.0) 224 (1.0) 3 4 8

forge-R3 145 (1.0) ↑ (0.0) 3 6 13

guidance 14 (1.0) 94 (1.0) 12 6 6

pdist 622 (1.0) 2776 (0.2) 6 7 7

wbs 67 (1.0) n.a. 1 9 8

x34 21 (1.0) n.a. 1 9 18 tim
eo

ut
:	1

h	
/	m

em
or
y:
	4
G
B

seconds	(#solved/#total)

Completeness	Check Edge	Tightening

implemented	in	xSAP
• back-end	of	COMPASS	for	
model-based	safety	analysis

• linked	to	nuXmv /	NuSMV,	
symbolic	model-checker	for	
infinite-state	transition	
systems

Implementation	
and	Benchmarks

30

Synthesis	and	Simplification	of	Graph

Effect	of	Simplification

31
verbose simplified

Introduction
Timed	Failure	Propagation	Graphs
• TFPG	formalism
• Behavioral	Validation
• Synthesis
• Implementation	&	Benchmarks
• Case	studies

Diagnosability	Analysis
Conclusion

32

Three	Case	Studies

• Solar	Orbiter	(SOLO):	sun-
orbiting	science	mission	under	
development
• three	case	studies	performed	
during	research	stay	at	ESTEC
• focus	on	problems	connected	to	
attitude	and	orbit	control
• submission	of	five	issues	to	SOLO	
FDIR	CDR	panel	(4	major)

©	ESA

Solar	Orbiter

33

Case	Study	1:	Software-based	Propagation

7	input signals:
• raw	sensor	readings
• BIT	values

13	faults from	FMECA

Abstract representation
of	values	and	functions.

Gyroscope	Channel	Processing	Function
(called	cyclically)

13	output signals:
• converted	readings
• computed	values
• health	flags

several	sub-functions
with	internal	state

34

Case	Study	1:	Software-based	Propagation
degraded	and	possibly
undetectable	output

Boolean	health	flag
(function	output)

TFPG	synthesis
• graph	synthesis:	4sec
• tightening:	43min

Findings
• adequacy	of	developed	

modeling	framework
• graph	simplification	for

improved	readability

35

Case	Study	2:	System-level	Propagation

36

Case	Study	2:	System-level	Propagation

Modeling
• physically	realistic	model
• accurate	acceleration	constants
• accurate	delay	modeling
(milliseconds	to	several	seconds)

37

Case	Study	2:	System-level	Propagation

Results
• manual	timing	analysis	not	fully	
corresponding	with	automated	one

• first	version	of	TFPG	was	not	complete
• some	delays	(of	isolation	phases)	were	longer	
than	estimated

• completeness	proved on	final	TFPG	in	30min

38

Case	Study	3:	Architectural	Propagation

• based	on	FMECA/FESL	tables
• focus:	IMU-AOCS-SYS
• no	system	modeling	and	timings
• TFPGs	useful	to	validate	FDIR?

IMU	failure
modes

standard
monitor

functional
monitor

failure
effect

39

Case	Study	3:	Architectural	Propagation

• TFPGs	force	engineers	to	be	
explicit	about	propagations	and	
respective	delays

• corresponds	to	reasoning	on	
propagation	and	monitoring	
during	FDIR	review

• enables	reasoning	about:
• time-critical	propagations
• monitor	tuning

40

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
• Alarm	Specification	Language
• Verification	of	Diagnosability
• Optimization	of	Observables
• Implementation	&	Benchmarks

Conclusion

41

Alarm	Specification	Language	(ASL)

isolation
recovery

alarms

ob
se
rv
at
io
ns

com
m
ands

detection

fault

system

FDIR

42

• used	to	express	formal	
requirements	on	alarms to	
be	generated

• developed	in	ESA	projects	
on	FDIR	design	with	model-
based	technology	
(AUTOGEF	/	FAME)

Alarm	Specification	Language

Alarm Condition

Delay between the diagnosis condition � and the alarm A

Whenever the fuel valve gets stuck-closed, the FDI should raise the
alarm within 4 time-units (BoundDel)

clk
�

ExactDel(A,�, 2) : A
BoundDel(A,�, 4) : A

FiniteDel(A,�) : A

22/37

43

Alarm	Specification	Language	(ASL)

isolation
recovery

alarms

ob
se
rv
at
io
ns

com
m
ands

detection

fault

system

FDIR

44

Given	an	ASL	specification:

1. Diagnosability:	Can	a	
corresponding	detection	
module	be	implemented?

2. Sensor	Optimization:	
Subsets	of	observables	
optimizing	cost	and	
guaranteeing	diagnosability?

Key	Framework	Features

expressive	specification	language
• temporally	extended	diagnosis	conditions
• various	forms	of	delay	bound	requirements
• operational	context

rich	representation	of	system	dynamics
• infinite-state	transition	system

automated	algorithms	for	important	design	problems
• verification	of	diagnosability
• optimal	selection	(synthesis)	of	observables

45

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
• Alarm	Specification	Language
• Verification	of	Diagnosability
• Optimization	of	Observables
• Implementation	&	Benchmarks

Conclusion

46

Critical	Pairs
• counterexamples	to	diagnosability	(bounded	delay)

• same	readings	of	observables	on	both	traces
• alarm	cannot	be	raised	within	required	time	limit;	based	on	available	
information,	beta	might	or	might	not	have	occurred.

𝛽Trace	A

Trace	B

-d +d

𝛽

+d’

Twin	Plant

48

system	behavior	with	faults

o1
o2

o3
o4

system	behavior	with	faults

o1
o2

o3
o4

𝛽

-d +d +d’

𝛽

twin	plant Use	twin	plant	and	model-checking	
to	look	for	critical	pairs.

Twin	L

Twin	R

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
• Alarm	Specification	Language
• Verification	of	Diagnosability
• Optimization	of	Observables
• Implementation	&	Benchmarks

Conclusion

49

Synthesis	of	Observables
What	sets	of	observables	
guarantee	diagnosability?

• usual	synthesis	approach:	
enumerative

• our	proposal:	symbolic
approach

• optimization:
• minimality
• cost-optimality

• based	on	parameterized	
version	of	twin-plant

50

possible	combinations	of	observables

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
• Alarm	Specification	Language
• Verification	of	Diagnosability
• Optimization	of	Observables
• Implementation	&	Benchmarks

Conclusion

51

Experiments

Implementation
• implementation	within	xSAP,	based	on	nuXmv
• standard	LTL	procedures	for	verification	of	diagnosability
• off-the-shelf	parameter	synthesis	for	synthesis	of	observables

Benchmark	Models
• similar	to	models	used	for	TFPG	experiments
• different	timing	model	(one-step-one-tick	vs.	timestamps)

52

Experiments:	Verification

1e−01 1e+00 1e+01 1e+02 1e+03
1e
−0
1

1e
+0
0

1e
+0
1

1e
+0
2

1e
+0
3

BoundDel

Ex
ac
tD
el

TO
MO

TO M
O

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−0
1

1e
+0
0

1e
+0
1

1e
+0
2

1e
+0
3

FiniteDel

Bo
un
dD

el

TO
MO

TO M
O

53

Experiments:	Synthesis

54

enumerative
(random	costs)

enumerative
(compute	all)

enumerative
(flat	costs) Symbolic

(compute	all)

Experiments:	Synthesis

55

enumerative
(random	costs)

enumerative
(compute	all)

enumerative
(flat	costs) Symbolic

(compute	all)

Experiments:	Synthesis

56

enumerative
(random	costs)

enumerative
(compute	all)

enumerative
(flat	costs) Symbolic

(compute	all)

Introduction
Timed	Failure	Propagation	Graphs
Diagnosability	Analysis
Conclusion

57

Contributions
Timed	Failure	Propagation	Graphs	[AAAI16,	IJCAI16,	TACAS16]

1. trace-based	semantics	for	TFPGs
2. formal	abstraction	properties
3. validation	w.r.t.	system	model
4. automated	synthesis	procedures
5. case	studies	on	ESA	satellite	project

Diagnosability	Analysis	[AAAI12,	FMCAD14,	AIJ-TBS]
1. extension	of	alarm	specification	language	with	notion	of	context
2. twin-plant	method	to	verify	diagnosability
3. reduction	of	verification	to	model-checking
4. reduction	of	observables	selection	to	parametric	model-checking

58

Future	Work

All	Areas
• support	for	continuous	time	(hybrid	automata)
Timed	Failure	Propagation	Graphs
• performance	improvements	(compositional	approach?)
• diagnosability-conscious	synthesis
Diagnosability
• extend	critical-pair	approach	to	cover	corner	cases
• bounded-recall	(history	windows	vs.	full	logs)
Recoverability
• formal	specification	language,	feasibility	analysis

59

Thank	you	for	your	attention!

60

Appendix

61

Fault	Management	via	FDIR

Fault	Detection	Isolation	Recovery	(FDIR)

fault
(root cause)

failure

fault

system	boundaries

62

Diagnosability	(and	diagnoser	synthesis)	on	TFPGs

• synthesis	of	diagnoser	via	TFPG
• workflow

• translate	TFPG	to	transition	system
• analyze	diagnosability	(classical	definition)
• synthesize	diagnoser

• evaluated	by	Thales	Alenia	Space	on	
ExoMars	TGO	case	study	(FAME)

Non-
criticalo
ver-

heating

F-locomotion Stuck

Critical
over-
heating

[0,	10]	{C}

[0,	0]	{S,	C}

[4,	10]	{C}

[2,	2]	{C}

[1,	15]	{C}

F-cooling

MODULE main
VAR system_mode : {SafeZone, CriticalZone};
VAR forgerobot_failuremode_FailCooling :
failuremode (trans_type);VAR
forgerobot_failuremode_FailLocomotion :
failuremode (trans_type);
…

63

Operational	Context
• diagnosability	might	depend	on	assumptions	
on	the	general	environment	(e.g.	controller)	
not	included	in	system	model

• diagnosis	context	encoded	in	LTL

• 𝜓 ≔ 𝐺	𝐹	(𝑣. 𝑜𝑝𝑒𝑛 ∧ 𝑣. 𝑖𝑛 > 0)	
Periodically,	fluid	is	transferred	into	open	valve.

• 𝜓 ≔ 𝐺	(𝑠𝑦𝑠. ℎ𝑎𝑠_𝑝𝑜𝑤𝑒𝑟)
The	system	is	always	powered.

• 𝜓 ≔ 𝐹	(𝑒𝑛𝑔𝑖𝑛𝑒. 𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑓𝑢𝑙𝑙)
The	engines	will	eventually	provide	full	thrust.

system	behavior	with	faults

o1
o2

o3
o4

64

environment	not	included	in	system	model

Power	Supply	System

G-dead

U1	
offline

B1	no	
power

B2	no	
power

G	no	
charge

B1-dead

B2-dead

1

B1 B2

…

Battery	1 Unit	1

Battery	2 Unit	2

Generator

Metric	Temporal	Logic

• syntax:
• intervals	used	in	paper:									 and
• point-wise	semantics,	interpreted	on	timed	words:

• since-operator:		 iff
and																		and

� ::= p|¬�|�1 ^ �2|�1U
I�2|�1S

I�2

[a,1)

(s0, ⌧0), (s1, ⌧1), . . .
⇡[k] |= �1S

I�2

9i  k · ⌧k � ⌧i 2 I ⇡[i] |= �2 8i < j  k · ⇡[j] |= �1

(a,1)

Parametric	Model-Checking

• parameters	P:	lower/upper	delay	bounds
• parameterized	system	model:	MP

• model-checking	problem:	M𝑷 ⊨ 𝑝̅ → Φ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
• reuse	inductive	invariant	generated	by	model-checker

• inductive	invariant:	over-approximation	of	reachable	states
• 𝐼 ⇒ 𝐼𝑁𝑉
• 𝐼𝑁𝑉 ∧ 𝑇 ⇒ 𝐼𝑁𝑉′
• use	INV to	check	further	candidates	without	calling	model-checker
• strengthen	initial	states	and	transition	relation

• 𝐼 ≔ 𝐼 ∧ 𝐼𝑁𝑉
• 𝑇 ≔ 𝑇 ∧ 𝐼𝑁𝑉

Classical	Failure	Analyses

Item failure	
mode

Local	
effects

Subsystem
effect

System	Effect

Brake	
Manifold

Internal	
Leakage

Decreased	
pressure

No	Left	
Wheel	
Braking

Severely	
Reduced	
Aircraft	
deceleration

Propagation	delays?
Granularity	of	modeling?

Mode	constraints?

AND/OR	semantics?

Using	a	single	representation?

Monitoring?

68

Contributions	to	FDIR	Critical	Design	Review

• submission	of	five	issues	to	
SOLO	FDIR	CDR	panel
(4	major,	1	minor)
• the	need	to	be	explicit	helped	
identifying	ambiguities	in	
documentation
• issues	were	disposed	by

• confirming	our	interpretations	or	
providing	detailed	explanations

• recognizing	corner	cases	and	
confirming	correct	FDIR	response

• improving	documentation

©	ESA

Solar	Orbiter

69

TFPGs:	Related	Work

• TFPG	maturation	with	historical	maintenance	data
• Strasser	and	Sheppard	(2011)
• estimate	probability	of	missing/wrong	edges,	no	time	and	mode	information
• cannot	be	applied	at	design	time

• TFPG	synthesis	for	local	components	from	data/control	flow	graph
• Dubey	et	al.	(2013)
• integration	of	component	TFPGs	based	on	component	topology
• non-functional	interactions	and	dynamic	evolution	not	captured

• TFPG	synthesis	for	component	behaviors	modeled	by	timed	automata
• Priesterjahn	et	al.	(2013)
• no	formal	characterization	of	synthesis	result,	no	validation	algorithm
• discrepancies	bound	to	input/output	ports	of	components

• TFPG	standalone	validation	without	system	model
• based	e.g.	on	SMT-solving,	Bozzano	et	al.	(2015)

70

TFPGs	in	Academia	and	Industry

• TFPGs Definition
• Misra et.	al,	DX	Workshop	1992
• Karsai,	Abdelwahed,	Biswas,	AIAA-GNC	2003

• Use	of	TFPGs	in	industry	(eg Boeing,	NASA,	ESA)
• Hayden	et.	al,	Diagnostic	Technology	Evaluation	Report	For	On-Board	Crew	Launch	Vehicle	2006
• Ofsthun,	Abdelwahed,	Autotestcon 2007
• Atlas	et.	al,	IEEE	Aerospace	Conference	2001

• Applications	of	TFPGs
• Misra et.	al,	SPIE	IS	Symposium	1994
• Dubey,	Karsai,	Mahadevan,	Dagstuhl Seminar	2010
• Dubey,	Karsai,	Mahadevan,	IEEE	Aerospace	Conference	2011

• Industrial	projects
• ESA	COMPASS/FAME	(with Thales	Alenia Space)
• ESA	COMPASS/HASDEL	(with Airbus	Defence &	Space)
• internal case	studies at OHB

71

Completeness	Proof	Obligations	(OR	nodes)

 OR·A(d,�) := G((O�d) ! O((O�d) ^_

e=(v,d)2E

((O�v) ^ �µ(e)S�tmin(e)(O�v) ^ �µ(e))))

 OR·B(d,�) := G¬
(

_

e=(v,d)2E

((O�
v

) ^ �
µ(e) ^ ¬(O�

d

)S>tmax(e)((O�
v

) ^ �
µ(e) ^ ¬(O�

d

)))

some	e is	active	for	more	than	tmax without	d activating

some	e has	been	active	for	at	least	tminwhenever	d activates

never

unexpected
activations?

missed
activations?

TFPG	is	complete					iff the	proof	obligations	for	all	nodes
hold	on	the	system	model.

72

Algorithm	Graph	Synthesis

Simplification

• express	precedence	constraints	among	user-defined	nodes	in	Boolean	
formula
• use	SAT	solver	to	check	if	new	propagation	patterns	are	possible	
when	removing	edges	(conjuncts)
• preserves	completeness	and	graph	correctness

�prec(G) :=
^

d2D

(d !
_

(v,d)2E(G)

^

(v0,v)2E(G)

v0)

Tightness	Checking

• Check	if	some	edge	parameter	can	be	improved
without	breaking	any	completeness	proof	obligations.

 OR·A(d,�) := G((O�d) ! O((O�d) ^_

e=(v,d)2E

((O�v) ^ �µ(e)S�tmin(e)(O�v) ^ �µ(e))))

Non-
critical
over-
heating

[0,	10]	{C}
F-cooling

75

Automated	Tightening

 OR·A(d,�) := G((O�d) ! O((O�d) ^_

e=(v,d)2E

((O�v) ^ �µ(e)S�tmin(e)(O�v) ^ �µ(e))))

Non-
critical
over-
heating

[0,	∞]	{S,C}
F-cooling

Use	parametric	proof	obligations	to
search for	tight	edge	constraints.

76

Tightening	– Multiple	Solutions

• multiple	tight	solutions	might	exist
• connected	with	simultaneous	propagations?
• to	be	investigated

Over-
heating

F-locomotion

F-cooling

Stuck

[1,10]

[4,10]

[4,10]

[1,10]

TFPG	Tools:	Implementation

• implemented	in	xSAP
• back-end	of	COMPASS	for	model-based	safety	analysis
• linked	to	nuXmv,	symbolic	model-checker	for	infinite-state	transition	systems

• behavioral	validation
• checking	of	MTL	by	reduction	to	reachability	problems

• synthesis
• precedence	constraints	computed	via	minimal	cut-set	procedures	in	xSAP
• graph	simplification	via	SAT-procedures	of	MathSAT
• tightening	via	techniques	from	parametric	model-checking

78

reduce	MTL	proof	obligations	to
invariance	properties:

•

•

Reduction	to	Reachability

DEFINE EState := h_B1_LOW & (Mode_P | Mode_S1);

VAR ETime : real;

ASSIGN init(ETime) := case
EState : 0;
TRUE : -1;
esac;

ASSIGN next(ETime) := case
h_S1_WRONG : ETime;
!next(EState) : -1;
!EState & next(EState) : 0;
TRUE : ETime + t_#delta;
esac;

B1
Low

S1
Wrong

[2,3]	{P,S1}

ETime  3

h S1 WRONG ! ETime � 2

Experimental	Evaluation

• finite-state	system	models
• Acex/Autogen:	derived	from	partially	random	graphs
• PowerDist:	power	distribution	management
• Guidance:	Space	Shuttle	engine	contingency	procedure
• WBS:	aircraft	wheel-braking	system	(AIR6110)
• X34:	Livingstone	model	of	experimental	space-plane	propulsion	system	

• infinite-state	system	models
• ForgeRobot:	model	of	robot	working	in	industrial	forge
• Battery	Sensor:	running	example
• Cassini:	spacecraft	propulsion	systems

Critical	Pairs

• critical	pair	exists	➔ condition	not	diagnosable	within	time	bound
• What	if	no	critical	pair	exists?

81

Exact	Delay

Proves	diagnosability.

Bounded	Delay

Proves	diagnosability
if	beta	is	a	permanent
condition	(standard
assumption).

Else,	guarantees
diagnosability	within	2d.

Finite	Delay

Proves	diagnosability	for
finite-state	models	and
context	encoded	as	a
safety	property.

Critical	Pairs	as	LTL	formulae

𝐺	 	𝑡𝑤𝑖𝑛N. 𝑠𝑦𝑠. ℎ𝑎𝑠_𝑝𝑜𝑤𝑒𝑟	 ∧ 𝐺 𝑡𝑤𝑖𝑛O. 𝑠𝑦𝑠. ℎ𝑎𝑠_𝑝𝑜𝑤𝑒𝑟
∧
𝐹	(𝑂𝑏𝑠𝐸𝑞		 ∧ 		𝑌U	𝑡𝑤𝑖𝑛N. 𝑓𝑎𝑢𝑙𝑡		 ∧ 		𝐻WXU	¬𝑡𝑤𝑖𝑛O. 𝑓𝑎𝑢𝑙𝑡)

82

𝛽Trace	A

Trace	B

-d +d

