

Welcome to FPD-Fall 2016 & Competence Domain #3 : Avionics

TEC-SW/ED Final Presentation Days – Fall 2016 Giorgio Magistrati TEC-EDD Jean-Loup Terraillon TEC-S

ESA UNCLASSIFIED - For Official Use

Welcome to Fall edition of TEC-ED/SW Final Presentation Days

Tuesday, 6 December 2016

	08:00 - 08:30	Registration 30' Speakers: Kathleen Gerlo (ESA/ESTEC - Software Systems Division), Ms. Bertilla Sinka (ESTEC)
	08:30 - 08:45	Introduction 15'
ons,	08:45 - 09:30	Schedulability Analysis Techniques and Tools for Cached and Multicore Processors 45' Speaker: Mr. Panagiotis Katsaros (CERTH) Material: Abstract
-		Haterial. Abstract
endees, a:	09:30 - 10:15	Definition and Design of software components for LEON3FT Microcontroller and LEON-REX Instruction Set Architecture 45' Speaker: Mr. Daniel Cederman (Cobham Gaisler AB) Material: Abstract
	10:15 - 11:00	OBC Mass Memory (Solid State mass Memory Board/Module Integrated in OBC) 45' Speakers: Mr. Patrick Sandin (RUAG Space AB), Mr. Dietmar Walter (DSI), Mr. Glenn Johnson (SciSys) Material: Abstract
	11:00 - 11:30	Coffee Break
	11:30 - 12:15	CLP: Control Loop Processor, Architectural Design, Verification and FPGA prototypes 45' Speaker: Mr. Marco Ruiz (SABCA) Material: Abstract
	12:15 - 13:00	Deploying Plug and Play Avionics 45' Speaker: Mr. Richard Melvin (SciSys) Material: Abstract
	13:00 - 14:00	Lunch Break
	14:00 - 14:45	Extensions and Validation of Virtual Platform for complex System-on-Chip and IP Cores Design for Space 45' Speaker: Mr. Alberto Ferrazzi (Terma) Material: Abstract 📆
	14:45 - 15:30	
	15:30 - 16:15	DMON and the AGGA 4 45' Speaker: Prof. Michael Ryan (O.C.E. Technology) Material: Abstract
	16:15 - 16:45	Coffee Break
	16:45 - 17:30	LLVM compiler for in flight SW development and validation process 45' Speaker: Dr. Emil Vassev (LERO) Material: Abstract 1
	17:30 - 18:15	Space Fibre IP core 45' Speaker: Mr. Felix Siegle (Cobham Gaisler AB)

• 2 Days,

ESA UNCLASSIFIED - For Official Use

- 20 Presentations,
- appx 100 attendees
- Day-1 agenda:

Competence Domains

- D/TEC, pushed by the need to increase the cooperation among the various elements and layers that compose the ESA technical directorate, aiming to increase the cross-fertilization between TEC and OPS organizational entities and improve the responsiveness to industrial and stakeholders needs, has created the Competence Domains.
- Ten (10) Competence Domains have been created:
 - 1. EEE / Components / Photonics / MEMS
 - 2. Structures / Mechanisms / Materials / Thermal,
 - 3. Avionics Architecture / DHS / OnBoard S/W / FDIR / GNC / AOCS / TT&C (E2E)
 - 4. Electric Architecture / Power & Energy / EMC
 - End-to-end RF & Optical Systems and Products for Navigation, Communication & Remote Sensing
 - 6. Life / Physical Science Payloads / Life Support / Robotics and Automation
 - 7. Propulsion, Space Transportation and Re-entry Vehicles
 - 8. Ground Data Systems / Mission Operations
 - 9. Information Technology and data fusion and analytics
 - 10. Astrodynamics / Space Debris / Space Environment

Systems Engineering, tools and PA/QA/Safety are transversal and represented in all CD's. ESA UNCLASSIFIED - For Official Use ESA | 06/12/2016 | Slide 3

= II 🛏 == 🗕 + II = 😇 == II II = = = = 📰 🖬 II == = II 💥 🙌

- Each Competence Domain has a leader and is animated by a group of experts across departments to cover all disciplines of the Competence Domain. S/he is deputised/supported by a colleague from a different Dept.
- The Competence Domain Lead(er) of CD#3 is Jean-Loup Terraillon (TEC-S). TEC-EDD GM is the deputy. Mandate of 2+1 years
- The Competence Domain includes Systems Engineers and a PA expert.
- The Competence Domain does not replace the structure/organigramme of D/TEC composed by sections/divisions/departments/offices but supports it with the main task to improve cooperation and responsiveness.

	t Technology-Domainst																											
г]	Nr¤	01¤	02¤	03¤	04¤	05¤	06¤	07¤	08¤	09¤	10¤	11¤	12¤	13¤	14¤	15¤	16¤	17¤	18¤	19¤	20¤	21¤	22¤	23¤	24¤	25¤
	Partial-involv		Title¤	O/B-Data-Systems#	Space-System-Softwarex	Spacecraft-Powert	Spacecraft-Environment-¶ & Effects¤	Space-System-Control#	RF-Payload-Systemst	Electromagnetics [.] Technology¤	System Design ¶ & Verification¤	Mission-operation-and-¶ Ground-Data-Systems¤	Flight-Dynamics-and-GNSS¤	Space-Debrist	Ground-Station-Systems-¶ and-Networks¤	Automation, Telepresence-¶ & Robotics¤	Life & Physical Sciences	Mechanismsk	Optics#	Opto-Electronics#	Aerothermodynamics#	Propulsion¤	Structures-&-Pyrotechnics#	Thermalk	ECLS-and-ISRU¤	Components¤	Materials-&-Processest	Quality, Dependability and Safety¤
	Legenda¶		Leadh	Ph-Armbruster¤	JL-Terraillon/-¶ N-Peccia-/-¶ PG-Marchetti¤	H-Bardek	E. Daly-/V. Ferlet¤	ABenoită	R-De-Gaudenzi¤	C. Mangenotk	J. Fuchs / B. Laine¤	NPecciaŭ	W.Enderlex	HKrag¤	KU:Schulzt	G. Visentink	RLindner¤	L. Gaillard¤	L. Maresi¤	ZSodnik¤	JLongo¤	G-Saccocciat	J-Santiago-Prowald¤	0. Pint	CLasseur¤	Rde-Marino-+-¶ LMarchand¤	M. Nikulainen¤	L. Bianchik
	Competence-Don		ğ	ğ	×	ă	ğ	ă	ğ	ğ	¤	ă	ğ	ğ	ğ	ğ	ğ	ğ	ă	ğ	ă	ă	ğ	ă	ă	ğ	ğ	ğ
Nr¤	Title¤	Lead¤	ğ	¤	¤	¤	¤	ğ	ğ	ğ	¤	ă	ğ	ğ	ğ	¤	×	ğ	ğ	×	¤	ğ	ğ	¤	ğ	ğ	¤	¤
01¤	EEE-/·Components-/- photonics/MEMS¤	L.·Marchand·/K.· Minoglou·¤	Ħ	¶ X¤	¤	¤	¤	Ħ	ă	Ħ	ă	ă	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	ă	¶ X¤	¤	Ħ	Ħ	Ħ	¤	¶ X¤	¥	ă
02¤	Structures, mechanisms, materials, thermal¤	O.·Pin·/·T.Ghidini¤	ă	ğ	Ħ	¤	¤	¤	ă	¤	¤	¤	ă	ă	ă	ă	Ħ	¶ X¤	¤	¤	¤	×	¶ X¤	¶ X¤	¤	Ħ	¶ X¤	ä
03¤	Avionic-Architecture-/-DHS-/- OnBoard-S-W-/-(FDIR)-/-¶ GNC-+-AOCS-/-TT&C-(E2E)¤	JL-Terraillon-/-¶ GMagistrati¤	Ħ	¶ X¤	¶ X¤	Ħ	Ħ	¶ X¤	¶ X¤	Ħ	¤	Ħ	Ħ	Ħ	ă	я	н	¥	Ħ	Ħ	¤	Ħ	Ħ	¤	Ħ	Ħ	¤	Ħ
04¤	Electric-Architecture-/-¶ power-and-energy/-EMC·/-¤	F.·Tonicello·/·J.Wolf¤	Ħ	Ħ	¶ X¤	¶ X¤	Ħ	Ħ	Ħ	۹ X¤	д	д	Ħ	¤	Ħ	¤	д	¶ X¤	Ħ	Ħ	Ħ	¤	¤	Ħ	Ħ	Ħ	Ħ	¤
05¤	End-to-end-RF-&-Optical- systems-and-products-for- navigation, -communication- and-remote-sensing¤	R.·de-Gaudenzi·/·¶ L.Maresi¤	¤	Ц	¥	д	Ħ	Ħ	¶ X¤	Ħ	д	Ц	¶ X¤	Ħ	¶ X¤	¤	Ħ	¤	¶ X¤	¶ X¤	Ц	¤	¤	Ц	Ħ	¤	д	¥
06¤	Life-/·Physical-Science-Payloads- /·Life-Support-/·Robotics-and- AutomationX	R.·Lindner·/·G.·Visentin¤	¤	¤	д	¤	Ħ	Ħ	¤	¤	д	д	¤	¤	¤	¶ X¤	¶ X¤	¤	¤	Å	¤	¤	¤	¶ X¤	¶ X¤	¤	¤	Ħ
07¤	Propulsion, ¶ space-transportation-and-¶ re-entry-vehicles¤	GSaccoccia-/-SBennani¤	ğ	Ħ	¤	Ħ	¤	¶ X¤	Ħ	¤	¤	Ħ	Ħ	¤	Ħ	ğ	д	Ħ	Ħ	Ħ	¶ X¤	¶ X¤	¶ X¤	¶ Х¤	Ħ	Ħ	Ħ	ğ
08¤	Ground-data-systems-/-mission- operations¤	N.·Peccia/·K.L.Schultz¤	¥	¥	Ħ	Ħ	¤	Ħ	¥	¤	Ħ	¶ X¤	Ħ	д	¶ X¤	¥	¤	¥	¤	Ħ	¶ ដ	ğ	ğ	Ħ	Ħ	Ħ	Ħ	¤
09¤	Information-Technology-and- Data-fusion-&-analytics-¤	R.·Franco·/·B.·Laine¤	¤	д	д	д	¤	Ħ	ă	¤	¶ X¤	¶ x¤	Ħ	¤	ă	¤	¤	¤	¤	Ħ	д	¤	¤	д	д	¤	д	¤
10¤	Astrodynamics-/-Space-Debris-/- Space-environment¤	W.Enderle/·H.Krag¤	ğ	Ħ	×	Ħ	¶ X¤	Ħ	й	×	Ħ	Ħ	¶ X¤	¶ X¤	Ħ	ă	Ħ	Ħ	ă	Ħ	ŭ	Ħ	Ħ	Ħ	Ħ	Ħ	¤	ă

 $System \cdot Engineering, \cdot tools \cdot (\cdot including \cdot modeling \cdot and \cdot simulation) \cdot and \cdot PA/QA/Safety \cdot are \cdot transversal \cdot and \cdot represented \cdot in \cdot all \cdot CDs \P = (1 + 1) \cdot (1 + 1$

Perimeter

Avionics systems

architecture, communication (incl. CFDP), autonomy, fdir, operability, security, o/b gnss receiver, developmentverification-validation processes

Data systems

data processing, data management, payload/platform computers, data storage, on-board networks, microelectronics (ASICs, FPGAs, IP cores)

<u>112</u>

TT&C E2E systems

space communication architecture, payload data modulator, transponder

CD03

Control systems

aocs & pointing, gnc, enabling technologies, control techniques, Sensors, RF and optical metrology

Software systems

flight software, software quality, dependability

+

Avionics and Harmonisation: possible future status

Avionics Embedded Systems dossier: roadmap listing Avionics level cross-sectorial activities and sectorial activities with a cross-sectorial scope Receivers dossier										
Data Systems sectorial activities with an Avionics level scope <u>defined</u> in AES dossier	Control Systems sectorial activities with an Avionics level scope <u>defined</u> in AES dossier	On-Board Software sectorial activities with an Avionics level scope <u>defined</u> in AES dossier	TT&C (E2E) sectorial activities with an Avionics level scope <u>defined</u> in AES dossier							
Data Systems On-board Computers and Data Systems dossier	Control Systems AOCS Sensors and Actuators dossier	Software Systems	TT&C E2E							
Payload Data Processing Dossier	Others tbc (control & estimation	On-board Software dossier	TT&C transponders & payload data transmitters							
Microelectronics Dossier Maybe only 1 dossier	techniques) RF & Optical metrology		Optical communication (tbc)							

ESA UNCLASSIFIED – For Official Use

ESA UNCLASSIFIED - For Official Use

ESA | 06/12/2016 | Slide 7

= II ▶ == + II = ≝ = II II = = = # → II = II ₩ |||

Roadmaps

Related Harmo Roadmap	Past Revisit	Planned Revisit	Remarks
Avionics Embedded Systems	2016.1		
On-Board Payload Data Processing	2016.1		It has been moneyed to combine these 2 readmons in a single and for the next revisit
Data Systems and On Board Computers	2016.1		It has been proposed to combine these 3 roadmaps in a single one for the next revisit. Microelectronics is also a topic of relevance for CD 1.
Microelectronics - ASIC & FPGA	2016.1		
On-Board Software	2014.2	2019?	
AOCS Sensors and Actuators (Part I & Part II)	2013.1 & 2015.2	2019?	AOCS Sensors and Actuators was split in 2013. Part I covers only Star Trackers, EPS. Gyros, Accelerometers, Reaction Wheels. Part II covers the remaining AOCS: IMUs, MTMs/MTQs, Sun Sensors, Earth Sensors, HNS (Inertial/GNSS), Optical Navigation Sensors, Lidars/3D cameras, CMGs. Topic of relevance also to CD 1 and CD 2.
On-Board Radio Navigation Receivers	2013.2	2019	Topic of relevance also to CD 5.
RF & Optical Metrology	2008.1	2018	In 2008, two separate TDs / RMs sets were issued: "Formation Flying - Optical Metrology Technologies" and "Formation Flight (FF) Radio-Frequency (RF) Metrology". Topic of relevance also to CD 5.
TT&C Transponders and Payload Data Transmitters	2012.2	2019	

ESA UNCLASSIFIED - For Official Use

ESA | 06/12/2016 | Slide 8

CD#3 tasks

- Animate the CD community with technology events as
 - Workshops,
 - Trainings,
 - internal events.
- R&D coordination:
 - provide a system view as a link between individual R&D activities (TECNET, Harmonization),
 - liaise between different ESA Working Groups,
 - ensure the Work-Plans consistency, seek for synergies,
 - participate in the technology development process while supporting the related divisions in ensuring timely, complete and adequate dissemination of results.

Future Avionics Events

SESP2017

Simulation and EGSE for Space Programmes 28-30 March 2017 ESA-ESTEC http://esaconferencebureau.com/2017-events/17c01

10th International ESA Conference on Guidance, Navigation & Control Systems 29 May - 2 June 2017, Salzburg, Austria

http://esaconferencebureau.com/2017-events/17a03/introduction

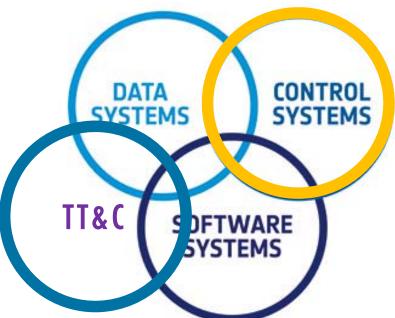
DASIA2017

Data Systems In Aerospace 30 May – 1 June 2017 Gothenburg www.dasia.org

(CD#3) TEC-ED & TEC-SW Final Presentation Days May/Fall 2017, ESA-ESTEC

CAN in Space2017 Workshop

14-16 June 2017, 70042 Mola di Bari (BA), Italy https://indico.esa.int/indico/event/162/


ADCSS2017

Workshop on Avionics, Data, Control and Software Systems 17-19 October 2017 ESA-ESTEC http://adcss.esa.int

CFPDs 2017 Coordinated Final Presentation Days Fall 2017, ESA-ESTEC ESA UNCLASSIFIED - For Official Use

<u>Subscription to avionics events</u>: <u>https://lists.estec.esa.int/lists/</u>

ESA | 06/12/2016 | Slide 10

Let's start !

ESA | 06/12/2016 | Slide 11

ESA UNCLASSIFIED - For Official Use

■ II ► II = + II = ⊆ II II = Ξ = H = Ø II = II H H