

European Space Agency

Centre For Research & Technology Hellas (CERTH)

Schedulability Analysis Techniques and Tools for Cached and Multicore Processors (MoSATT-CMP)

Final Presentation of ESA Contract No. 4000111814/14/NL/MH ESA/ESTEC, December 6, 2016

ESA/ESTEC -Dec. 6, 2016 Panagiotis Katsaros Centre for Research & Technology Hellas (GR)

Multicore Embedded Systems

- 2/35
- Integration of more software functions onto a single platform, to reduce:
 - size and weight
 - cost
 - power consumption

Multicore Embedded Systems

- 2/35
- Integration of more software functions onto a single platform, to reduce:
 - size and weight
 - cost
 - power consumption

BUT

- hardware resources shared between concurrent tasks with (possibly) different safety requirements
- need to ensure predictable timing behaviour through proper schedulability analysis techniques

Design problems

Spontaneous parasitic timing delays due to bandwidth interference

conflicts in simultaneous accesses to shared hardware resources (FPU's, DMA channels, IO peripherals)

Design problems

- Spontaneous parasitic timing delays due to bandwidth interference
 - conflicts in simultaneous accesses to shared hardware resources (FPU's, DMA channels, IO peripherals)
- Cache interference
 - additional misses due to sharing (one task modifies the state of the cache memory for another task)

Design problems

- Spontaneous parasitic timing delays due to bandwidth interference
 - conflicts in simultaneous accesses to shared hardware resources (FPU's, DMA channels, IO peripherals)

Cache interference

- additional misses due to sharing (one task modifies the state of the cache memory for another task)
- Adaptation to unexpected overload situations (e.g. in autonomous systems)
 - resources (extra margins) to be dynamically reallocated to safety-critical tasks
 - mixed-criticality scheduling

Mixed-criticality scheduling

- 4/35
- A conservative amount of resources is allocated to high-criticality tasks
 - resource budgets not claimed by them in normal operation (no overloads) can be used by the less critical tasks.

Normal Mode			
Shared Resources	HI	LO	
Proc. Cores	н	LO	
		Utilization, %	→

Mixed-criticality scheduling

- 4/35
- A conservative amount of resources is allocated to high-criticality tasks
 - resource budgets not claimed by them in normal operation (no overloads) can be used by the less critical tasks.

- To free up the resources from LO tasks (mode switch)
 - can be instantaneously aborted and resume later, or
 - in degraded mode (fewer accesses to shared resource)

Schedulability should be guaranteed, no matter whether and when the mode switch occurs.

MoSATT-CMP design flow

- Not adequate support in Real-Time Operating Systems:
 - for managing the multicore hardware resources
 - scheduling that takes into account interference, as well as mixedcriticality
- Model-based Schedulability Analysis Techniques & Tools for Cached and Multicore Processors: a model-based software design flow for . . .
 - schedulability analysis to ensure the real-time constraints
 - predictable behaviour, through the management of multicore resources

ESA/ESTEC - Dec. 6, 2016

ESA/ESTEC - Dec. 6, 2016

MoSATT-CMP design steps for space systems

- Schedulability analysis is based on a unified "concurrency model
 - all execution entities (tasks,
 - SW HW association
 - scheduling constraints (algorithm, locking for shared variables etc.)
- Guarantee timing behaviour is

Validation of scheduling by simulation or verification

MoSATT-CMP design steps for space systems

procedure

tion

- Automated code generation for the target execution platform:
 - user-defined scheduling with minimal run-time support
 - "what you verify is what you execute"
- Possible excessive delays & response times, due to resource starvation cases.
 - validation by tracing/monitoring tools
- performance analysis, if certain certification requirements have to be met

ESA/ESTEC - Dec. 6, 2016

MoSATT-CMP tools are based on TASTE

12/35

Open source tool-chain for model-based design-byrefinement of embedded systems:

MoSATT-CMP tools are based on TASTE

12/35

Open source tool-chain for model-based design-byrefinement of embedded systems:

testing implementation scenarios derived from a common model

MoSATT-CMP tools are based on TASTE

12/35

Open source tool-chain for model-based design-byrefinement of embedded systems:

 testing implementation scenarios derived from a common model
 new scheduling policies via userdefined model attributes

MoSATT-CMP tools are based on TASTE

12/35

Open source tool-chain for model-based design-byrefinement of embedded systems:

- testing implementation scenarios derived from a common model
- new scheduling policies via userdefined model attributes
- domain-specific analysis (e.g. model checking, schedulability)

MoSATT-CMP tools are based on TASTE

12/35

Open source tool-chain for model-based design-byrefinement of embedded systems:

- testing implementation scenarios derived from a common model
- new scheduling policies via userdefined model attributes
- domain-specific analysis (e.g.
 - model checking, schedulability)
- supports existing languages and tools, appropriate for particular design problems

Analysis & code generation using BIP

- 13/35
- RT-BIP formal language: executable models for concurrency
 & timing behaviour of system software components

Analysis & code generation using BIP

13/35

RT-BIP formal language: executable models for concurrency
 & timing behaviour of system software components

 interacting task automata (timed automata with transitions that have non-zero execution time)

Analysis & code generation using BIP

- 13/35
- RT-BIP formal language: executable models for concurrency
 & timing behaviour of system software components

- interacting task automata (timed automata with transitions that have non-zero execution time)
- BIP model is translated in C++

Analysis & code generation using BIP

- 13/35
- RT-BIP formal language: executable models for concurrency
 & timing behaviour of system software components

- interacting task automata (timed automata with transitions that have non-zero execution time)
- BIP model is translated in C++
- Iinked with the multi-threaded BIP Runtime Environment (RTE)

Analysis & code generation using BIP

13/35

RT-BIP formal language: executable models for concurrency
 & timing behaviour of system software components

- interacting task automata (timed automata with transitions that have non-zero execution time)
- BIP model is translated in C++
- Iinked with the multi-threaded BIP Runtime Environment (RTE)
- BIP RTE supports parallel execution of BIP components using POSIX threads

Models of Computation (MoC)

14/35

Technical challenges:

- schedule tasks while taking into account task dependencies
- predictable timing behaviour while retaining the efficiency potential through parallel processing
 - functional determinism
 - program's outputs do neither depend on the tasks' execution times nor on the tasks' scheduling

Models of Computation (MoC)

14/35

Technical challenges:

- schedule tasks while taking into account task dependencies
- predictable timing behaviour while retaining the efficiency potential through parallel processing
 - functional determinism

program's outputs do neither depend on the tasks' execution times nor on the tasks' scheduling

Adopt a suitable MoC:

- takes into account the applicable task dependency patterns
- imposes certain implementation independent restrictions on the task execution & inter-task communication
- supports multicore-aware scheduling and analysis techniques

FPPNs: a new process network MoC

- 15/35
- Fixed Priority Process Networks (FPPNs)
 - extends streaming MoC with real-time task properties
 - channels are not necessarily FIFOs
 - supported by multicore-aware schedulability analysis

MoSATT-CMP implementation tool-chain

MoSATT-CMP implementation tool-chain

MoSATT-CMP WCET estimation I

17/35

- Measurement-based (relatively easier to implement)
 - application runs in isolation on one core
 - no others tasks are running on any other core
 - measurements not tainted with bandwidth and cache interference from other tasks (worst-case interference depends on the scheduling)

Measurements:

- tasks's software parameters # of times that each code block is executed
- task's response time
- Code instrumentation using the Rapita Verification Suite (RVS)
 - provides an instrumentation point (IPoint) function
 - trace information from the board is captured by the RTBx data logger for recording time-stamped data (connected via the GPIO port)

ESA/ESTEC - Dec. 6, 2016

MoSATT-CMP WCET estimation II

Other graph edges removed by the simple elimination procedure.

 $Y(n) \approx \beta_0 + \beta_1 \cdot X_1(n)$

(a) instrumented source code

(b) i-point graph, flow counters and predictors

MoSATT-CMP WCET estimation III

19/35

Highly-probable execution time statistical overestimations

 avoid the high cost of guaranteeing extremely high probability
 Pr {Task Execution Time < WCET} > 1 - α
 (for Extreme Value Theory α=10⁻¹⁵, need for independent & identically
 distributed observations)

MoSATT-CMP WCET estimation III

19/35

Highly-probable execution time statistical overestimations

avoid the high cost of guaranteeing extremely high probability
 Pr {Task Execution Time < WCET} > 1 - α
 (for Extreme Value Theory α=10⁻¹⁵, need for independent & identically distributed observations)

P. Poplavko, L. Angelis, A. Nouri, A. Zerzelidis, S. Bensalem, P. Katsaros. Regression-based Statistical Bounds on Software Execution Time. Verimag Research Report no TR-2016-7, Grenoble, France, November 2016

cope with the complex dependency on input data

- find `adequate' dependency model with `random' errors
- take advantage of the rich set of automated statistical modelfitting tools (stepwise regression fitting)
- we can assess adequacy (safe and tight overestimations) and randomness with objective statistical indicators

Use case: JPEG Decoder application on Leon 4

Cache Interference Analysis for the NGMP

21/35

- C program analyzing the memory access trace of an application to determine the latency added by cache misses
 - reuse distance of a memory access to a block: # memory accesses between the current and the previous access to the block

Memory access trace:

gathered from the LEON4-N2X trace buffers via the Debug Support Unit and the GRMON2 debugger

Issues:

- program runs a number of instructions until the trace buffers are getting full (procedure automated with a tcl script)
- Very time consuming: 30 hours for trace with 1,3 million instructions

Use case: GNC app by Elecnor Deimos-Space S.L.U

- Guidance, Navigation & Control application originally built for the Leon3 single-core processor
 - GNC app modelling in TASTE Interface View (TASTE IV)
 - RTEMS calls removed from the C code
 - TASTE IV functional C code primitives generated
 - task graph & functional FPPN/DOLC model produced (TASTE2DOLC tool)
 - BIP model & code for the BIP RTE generated (DOLC2BIP tool)
 - code instrumentation & WCET analysis
 - BIP RTE ported to the Leon4
 - application running on Leon4 under various schedules

Use case: GNC app by Elecnor Deimos-Space S.L.U

Use case: GNC app by Elecnor Deimos-Space S.L.U

ESA/ESTEC - Dec. 6, 2016

TASTE IV tasks compiled to BIP

ESA/ESTEC - Dec. 6, 2016

BIP representation of a system

Use case: GNC app by Elecnor Deimos-Space S.L.U

Use case: GNC app by Elecnor Deimos-Space S.L.U

Multi-core interference aspects

- 28/35
 - Types of interference (SW and HW resources)
 - coarse-grain access to shared resource in 'coarse' blocks (once or few times per job execution)

read data superblock \rightarrow compute \rightarrow write data superblock

- fine-grain sporadic, can occur many times per job (e.g. bus accesses due to load/store in memory); extra WCET margins
- Overhead of the BIP RTE (coarse-grain, constant block size) δ worst-case time to handle one discrete transition in automaton
- Other interfering resources can be modelled similarly
 - any coarse-grain interference aspect is reflected in our task graph
 - time-triggered scheduling tasks start at fixed time instants even if previous tasks finish earlier

28/35

Multi-core interference aspects

- Types of interference (SW and HW resources)
 - coarse-grain access to shared resource in 'coarse' blocks (once or few times per job execution)
 - read data superblock \rightarrow compute \rightarrow write data superblock
 - fine-grain sporadic, can occur many times per job (e.g. bus accesses due to load/store in memory); extra WCET margins simplifying assumption
- Overhead of the BIP RTE (coarse-grain, constant block size) δ worst-case time to handle one discrete transition in automaton
- Other interfering resources can be modelled similarly
 - any coarse-grain interference aspect is reflected in our task graph
 - time-triggered scheduling tasks start at fixed time instants even if previous tasks finish earlier

ESA/ESTEC - Dec. 6, 2016

Schedulability analysis

ESA/ESTEC - Dec. 6, 2016

ESA/ESTEC - Dec. 6, 2016

ESA/ESTEC - Dec. 6, 2016

- List-scheduling (non-preemptive): global fixedpriority simulation with precedence constraints
- Table for time-triggered execution
- Input to the Online Sched. (not yet supported)
- Online Sched. supports resource mngmt policies

ESA/ESTEC - Dec. 6, 2016

ESA/ESTEC - Dec. 6, 2016

ESA/ESTEC - Dec. 6, 2016

- □Normal-mode table is first generated
- Emergency-mode table:
- mode switch can happen, while HI jobs continue without preemption or migration to other core
- Only HI-to-HI precedencies taken into account
- Same job-to-core mapping as in normal mode
- Schedulability fails upon detecting deadline miss

Schedulability analysis for mixed-criticality

mode switch can happen, while HI jobs continue without preemption or migration to other core
 Only HI-to-HI precedencies taken into account[§]
 Same job-to-core mapping as in normal mode
 Schedulability fails upon detecting deadline miss

Use case: GNC app by Elecnor Deimos-Space S.L.U

core-O: BIT RTE

ESA/ESTEC - Dec. 6, 2016

Use case: GNC app by Elecnor Deimos-Space S.L.U

core-O: BIT RTE

ESA/ESTEC - Dec. 6, 2016

Conclusions

- MoSATT-CMP design flow:
 - design-by-refinement of multicore systems
 - TASTE tool-chain & executable formal models in BIP
 - Schedulability analysis that takes into account
 - diverse task dependency patterns (MoCs)
 - sources of coarse-grain & fine-grain interference
 - mixed-criticality aspects
 - Code generation for BIP RTE: what you verify is what you execute
 - New measurement-based WCET analysis guaranteeing probabilistic estimates
 - New cache interference analysis technique for the Leon4
 - Validation on an industrial GNC application running on the Leon4

Future work

- Improve integration of the FPPN and other MoCs with the TASTE Interface View modelling semantics.
- Integration with the Ocarina TASTE model processing library.
- Explore further the potentials of execution time analysis.
- Support for preemptive scheduling by BIP/BIP RTE.
- Multicore schedulability of communicating system nodes.
- Integration of BIP RTE with the TASTE PolyORB-HI middleware to handle communication between distributed multicore nodes.
- Improve the tool support to achieve a higher TRL.

Centre For Research & Technology Hellas (CERTH)

- Panagiotis Katsaros, Prof.
- Lefteris Angelis, Prof.
- Spyros Nikolaidis, Prof.
- Alexandros Zerzelidis, Researcher
- Fotis Gioulekas, Researcher
- Maria Ntogramatzi, PhD student

Verimag Laboratory Université Grenoble-Alpes - France

- Saddek Bensalem, Prof.
- Peter Poplavko, Researcher
- Marius Bozga, Researcher

Elecnor Deimos-Space S.L.U, Spain

• Pedro Palomo, Software Engineer

Cobham Gaisler AB, Sweden

- Jan Andersson, Engineer
- Daniel Hellstrom, Software Engineer

Contact: katsaros@csd.auth.gr

https://www.researchgate.net/project/Task-Automata-BIP-Co-programming-of-Applications-and-Online-Schedulers-in-Timing-Critical-Systems

Schedulability Analysis Techniques & ToolsEfor Cached and Multicore Processors[

ESA/ESTEC -Dec. 6, 2016