
© The Terma Group 2016 7 December 2016 1

Extension and Validation of Virtual Platform for Complex
System-on-Chip and IP-Cores Design for Space

Luca Fossati, Technical Officer
Dr. Mattias Holm, Project Manager
Alberto Ferrazzi, Technical Manager
Mathilde Maury, Software Engineer

© The Terma Group 2016

Outline

• Introduction
• Project objectives
• What is SoCRocket
• SystemC
• TLM2.0

• Project
• Enhancement (models implementation)

• SpaceWire router
• GRCAN
• GR1553B

• Validation
• Method
• Results

• Analysis
• Evaluate benefit / effort to merge with upstream version of SoCRocket
• Design bus-size configurability and split and evaluate the implementation effort

• Conclusion and future work

7 December 2016 2

© The Terma Group 2016

Introduction: Project objectives

Terma had 3 objectives, they were:

• Analysis
• Understand the current status of SoCRocket and plan future development

• Enhance: implement new models
• Allow to simulate more SoC
• Bus models are particularly important as the SoC are often connected to other

systems

• Validation
• Understand if the platform and Terma enhancements were reliable

7 December 2016 3

© The Terma Group 2016

• Initially developed by TU Braunschweig under ESA contract, development carried on by
Terma in the past 3 years under two projects

• It is a framework to assemble custom simulators of SoC (System on Chip) typically
used in space

• A simulator is created by configuring and connecting different models together
• Each model brings the functionalities of its hardware counterpart

• SoCRocket Purposes
• Early software development
• Architecture exploration

• Usage in the hardware design process
• Early stages, for preliminary verification, before VHDL production/usage
• VHDL stage to have a reference during modelling

• SoCRocket is composed by
• Models library (i.e. MSDRAM, L2C, ...)
• Base classes that provide the principles for interconnecting the models
• Configuration generator wizard
• Build/Test execution system

7 December 2016

Introduction: What is SoCRocket

4

© The Terma Group 2016

• Core Library that moves SoCRocket
• Allows to use C++ features to write “executable specifications” (C++ program that

exhibits the same behaviour of the emulated system)
• Target digital electronic systems
• Provides

• Scheduler: runs the simulation
• Class library that provides the basic blocks to model any kind of system:

• Models: partitioning of code
• Processes: implement logic of model
• Ports: pass data through processes
• Signals: connect ports

• Supports different level of abstraction from RTL (Register Transfer Level) to Functional

7 December 2016

Introduction: SystemC

5

© The Terma Group 2016

• TLM = Transaction Level Modelling
• Focus is on modelling the transactions on the bus
• Transactions are modelled as calls to a function

• Example: ahb.b_transport(dataPayload, delay);
• Just a set of standard interfaces that have to be implemented by the models
• Faster then RTL

• The support to this kind of modelling is provided to SystemC by TLM library
• Two coding style that use 2 different transport interfaces

• Loosely Timed (LT): Transaction complete with the return of a blocking call. Models are
allowed to run ahead of simulation time. Faster but less accurate simulation. Used for software
development

• Approximately Timed (AT): Transaction is modelled with a set of non blocking calls. This allow
modelling of phases of the (bus) protocol. Models remains synchronized with simulation time.
Better timing accuracy but slower simulation. Used for architecture exploration purpose

• SoCRocket models must support both these code styles.
• SoCRocket provides some base classes that abstract the code styles so the model

developer does not have to deal with them in simple cases.

7 December 2016

Introduction: TLM2.0

6

© The Terma Group 2016 7 December 2016

Bind target and initiator sockets

Declare a target socket and
register the transport function
(b_transport)

Implement the transport
function.

Introduction: connecting models & transaction

7

© The Terma Group 2016

ENHANCEMENT

7 December 2016

© The Terma Group 2016

Overview

Nearly the GR740 SoC

© The Terma Group 2016

SpaceWire Router

Features
• The SpaceWire Router models the Gaisler SpaceWire Router
• It allows transfer of packets between any kind of the following ports:

• SpaceWire Port
• AHB Port
• Fifo Port

• The number of ports is configurable, up to 31 in total
• The configuration registers are accessible through:

• A special RMAP target port at address 0
• An optional AHB slave interface

• Two routing modes
• Packet distribution
• Group adaptive routing

• The model implements the correct prioritization and delays to access ports
• The model implements timers to interrupt blocked transfer that may block a port

7 December 2016 10

© The Terma Group 2016

SpaceWire Router - Architecture

7 December 2016 11

• There are four types of port
modeled in four different classes.

• Port class must implement a
common port interface

• Each port has a corresponding
process. The process uses the
common port interface to transfer
data from its own port to the target
port

• To each port correspond a port
arbiters the manage the queues for
accessing the port. A process that
desire to transfer to a port will wait
for the port available signal

• Core manage interaction between
the transfer processes, registers
and timers

© The Terma Group 2016

SpaceWire Router - Architecture

• Internally the SpaceWire router transfer characters which allows for accurate simulation
but results in much more complicated code

• To keep the transferring code easy to read and maintainable, it has been organized in
“phases”. Examples are:
• Discard Packet
• Wait for valid character
• Wait for port
• Perform transfer

7 December 2016 12

• Each phase is represented by a
function that contains the code to
be executed. The code can wait for
an event to append or return the
next phase to be executed

• The process execute the current
phase from which gets the next
phase to execute and continue in a
cycle

© The Terma Group 2016

SpaceWire Router - Architecture

• GRSPW2 core share lot of functionalities with the router:
• The GRSPW2 SpaceWire link interface has the same functionalities of a Router SpaceWire

port
• The GRSPW2 DMA interface has the same functionalities of a Router AHB port

• Lot of the code that was written for the GRSPW2 model could have been shared with
the router, but the GRSPW2 was not written with the reuse in mind

• When designing the SpaceWire ports, attention has been paid to produce code that
can be reused

7 December 2016 13

© The Terma Group 2016

SpaceWire - Architecture

• Reusable code has been achieved through:
• Use of template method pattern
• Use of delegates

• The generic, reusable code for a port has been put into a generic class that uses the
template method pattern. The port cannot be used as is but must be derived in order to
“specialize” it for a specific purpose (i.e a SpaceWire router port) by implementing the
required method (i.e accessor to registers)

7 December 2016 14

• The generic port uses
delegates to notify relevant
events (i.e. link state change)
so that the specialized port
can perform custom handling

© The Terma Group 2016

GRCAN

7 December 2016 15

Features
• The GRCAN models the Gaisler CAN IP Core
• It provides an interface between an AHB Bus and two redundant CAN bus
• The controller is configurable by registers, accessible through an APB slave interface
• The controller model implements the following features:

• Basic and extended CAN messages support
• Reading/Writing automatically CAN messages on a circular buffer using the AHB bus
• Interrupts
• Reset

• The bus model implements the following features:
• Arbitration
• Bus speed
• Error injection
• Message priority
• Message acknowledgement

© The Terma Group 2016

GRCAN - Architecture

7 December 2016 16

• The device is structured in units, each
handling a specific functionality of the
model

• The registers provide an abstraction of the
various communication ports, and
automatically trigger the controller with the
appropriate data defined in the registers
and on the AHB bus

• The controller implements the logic
regarding the CAN protocol : messages
send and receive, interrupts generation,
and errors checking

• The channels handle reading and writing at
the CAN bus level by providing a TLM-2
socket and a backward call

© The Terma Group 2016

GRCAN - Architecture

7 December 2016 17

• Genericity of the CAN Bus is handled by
being able to accept any device that can
connect to a TLM-2 Socket

• When a device write on the bus through the
b_transport call, the bus update the CAN
message to send if the new message has
higher priority, and notify the arbitration
thread of a new available data

• The arbitration thread simulates the bus
speed by waiting the appropriate amount of
time, inserts artificial errors in the frame if
configured to do so, and sends back the
CAN message to all connected devices and
to the original sender last for
acknowledgment

© The Terma Group 2016

GR1553B

7 December 2016 18

Features
• The GR1553B models the Gaisler 1553B IP Core
• The device is configurable by registers, accessible through an APB slave interface
• The device model implements the following modes:

• Bus Controller, process a transfer list and act as master on the Milbus
• Remote Terminal, slave device which answer to the Controller using a subaddress table
• Bus Monitor, passive device which can only receive and log messages passing through the bus

• The bus model implements the following features:
• Can connect up to 32 devices with unique id for fast transfer
• Bus failure

© The Terma Group 2016

GR1553B - Architecture

7 December 2016 19

• The milbus model has been made
extendable through:
• Use of interfaces
• Use of delegates

• To be able to connect to the bus, a milbus
device has to:
• Implement the MilbusDeviceInterface
• Define a socket that implements the

MilbusDeviceSocketIf
• The bus needs to implement the

MilbusBusInterface to be able to connect to
devices

• This architecture allows to be able to reuse
the devices while implementing a new bus, or
to reuse the bus while implementing new
devices

© The Terma Group 2016

GR1553B - Architecture

7 December 2016 20

• The GR1553B model implements the three
types of supported device in parallel, and
activates them according to the registers
configuration

• Each subdevice is implemented as a separate
class, and given access to the registers, the
AHB bus, and the signals

• Processing is done from the Bus Controller, who
triggers activity on the bus from a transfer list. It
spawns its own dedicated thread to start the
scheduler and will receive the data from the bus
through return call

© The Terma Group 2016

VALIDATION

7 December 2016

© The Terma Group 2016

Validation

• Two objectives:
• Behavioural
• Timing

• Previously co-validation method was used to validate models:
• Model unit tests are executed both on the SoCRocket model and the VHDL model
• Can be very accurate

• Co-validation method could not be used for the newest models developed in a previous
activity due to availability of VHDL models
• Gaisler VHDL models for basic components are free
• Other models are to costly for the project budget

• Change validation approach
• Use a developer board as golden reference
• Execute the same set of tests on the chosen board and a virtual platform created with SoCRocket as

close as possible to the board
• GR-CPCI-LEON4-N2X board containing a prototype of the NGMP processor architecture

• The programs generate a log in memory
• The log is then compared

7 December 2016 22

© The Terma Group 2016

Validation

• Randomized Testing
• Test program are randomly auto generated
• Help to cover corner cases
• Helps to cover unforeseen test cases (e.g. when the user does not follow the manual for setting

up certain components)

• Implementation
• Logging functions that write the state of the model (i.e. registers values) in memory are

implemented
• A set of functions that issue simple basic commands (e.g. enable SPW port) is implemented for

each core
• A sequence of functions, taken from the set, is generated randomly (probabilities can be adjusted

in the test generator configuration file)
• The test program

• Register the logging functions to react to interrupts
• Execute the random function sequence

7 December 2016 23

© The Terma Group 2016

Validation Summary

• During the attempts to get the tests executed several bugs were found and corrected:
• AHBCtrl incorrectly used IO BAR PNP to decode addresses (same algorithm of MEMORY was

used)
• MSDRAM / L2C PNP table had to be corrected after AHBCtrl decoding correction
• Incorrect tag format of the L2C diagnostic interface
• L2C lines incorrectly marked dirty on diagnostic read access
• SpaceWire Port in SpaceWire Router not adding EEP on disconnection

• Log analysis
• The core models behaves correctly

• L2C content dump matches
• MSDRAM tests execute correctly
• AHB/APB controllers works correctly

• SpaceWire Router behaves correctly with the exception of some corner cases

7 December 2016 24

© The Terma Group 2016

Validation Summary

• Log analysis
• Timing issues

• The execution time measured on the virtual platform is often shorter than the one on the board
• No time for investigation but the following hypothesis:

• A component along the memory chain returns an incorrect delay, too small to be noticed in unit-tests, but
that stack up during execution

• An incorrect configuration of the component

7 December 2016 25

© The Terma Group 2016

ANALYSIS

7 December 2016

© The Terma Group 2016

Analysis

• The upstream version of SoCRocket has been developed in the last two years and
diverged from the version owned by ESA

• In a previous project that involved extending the model library, two possible
enhancement were highlighted in order to improve the simulation accuracy:
• Bus size configurability
• SPLIT

• Objective of the analysis:
• Identify the changes in the upstream version of SoCRocket
• Evaluate if it is worth to merge the two versions and the effort required
• Evaluate the effort required to implement the SPLIT and bus size functionalities

7 December 2016 27

© The Terma Group 2016

Analysis

• In order to identify the changes in the upstream version of SoCRocket with respect to
the ESA version, the two code bases have been compared, resulting in:
• Lot of changes due to commenting and cleanup => diff was not helpful, careful review of all the

core classes was necessary
• Some of the differences were:

• New directory structure that separate the framework code from the model library
• Code clean up

• Uniform coding style
• Added comments & DOXYGEN documentation

• Introduced a package system into the build system
• Adjusted the class hierarchy and introduced a new base-class for models

• The advantages in merging the two version are summarized as follow:
• Code quality: code cleanup has been performed over the entire codebase, removing

unnecessary code and reorganizing it in order to be easier to manage
• No manual patching required during the installation
• Modularity supported by the build system (packages managing) and new directory structure
• Standardization of code in models (common initialization methods, common parameters

containers)
• New version of SystemC supported

7 December 2016 28

© The Terma Group 2016

Analysis

• The effort for merging the two versions results in the following activities:
• Reapply template parameters on new base classes (coming from a previous activity)
• Modify ESA models and relative test benches to use the new base classes and reorganize their

code to make effective usage of them (i.e. move register initialization code in proper overridden
method)

• Create a package for the models
• Estimated effort for merging: up to ~80h (half month)

• Conclusion
• The changes do not bring new features but improved code quality and standardize the way

models are implemented
• If it is foreseen further development on the platform a merge is suggested as the changes will

improve the maintainability
• Future improvements in upstream version will be imported easier

7 December 2016 29

© The Terma Group 2016

Analysis – bus-size configurability

• A code base analysis was necessary to determine the effort required to implement the
bus configurability functionality

• Bus Size
• The TU-Braunschweig version of SoCRocket is designed to be used with 32 bit buses. This

assumption has been found hardcoded through the whole code base

7 December 2016 30

• Configurability implementation
• The models classes requires

templatization. SoCRocket uses template
on ports to have compile time checks on
connected device ports. A template
parameter for port is the BUS size but it is
hard-coded to 32

• The code analysis highlighted that several
changes in the whole code base was
required, usually where a delay had to be
returned

• Test implementation and adaptation

© The Terma Group 2016

Analysis – SPLIT

• Design
• Should be implemented in AT mode only
• Introduction of three new phases:

• DATA_SPLIT Slave sends this phase to signal the AHBCtrl a SPLIT
• DATA_CONTINUE Slave sets this phase to signal that the AHBCtrl can grant the bus back
• BUS_GRANT The AHBCtrl use this phase to grant the bus to the SPLITed transaction

• Implementation
• AhbCtrl

• React to the DATA_SPLIT and DATA_CONTINUE phases:
• Re-arbitrate on DATA_SPLIT, starting another transaction from the queue as normal.
• Introduce a queue for the devices ready to continue a transaction
• When arbitrating first pool the queue of devices that wish to continue a transaction

• Masters
• No modification required
• Unless the master is connected to a slave directly (without AhbCtrl). In this case it has be modified to

respond to the DATA_CONTINUE phase with BUS_GRANT
• Slaves

• Models that whish to use split functionality has to be modified to issue the DATA_SPLIT and
DATA_CONTINUE phase, and to react to the BUS_GRANT phase

7 December 2016 31

© The Terma Group 2016

In conclusion Terma achieved:
• Provided a solution to implement SPLIT and BUS_SIZE configurability
• Common spacecraft models (CANbus, Milbus and SpaceWire) implemented
• SoCRocket behavioural characteristics validated

Terma has identified the possible future work:
• Merge with the upstream version
• Correct the timing issues
• Implement

• Bus size configurability
• Split functionality

• Extend SoCRocket with more models
• Add support for other emulator cores

• Adapt models from the model library to run also under other emulators (detach from
SystemC)

7 December 2016

Conclusion and future work

32

© The Terma Group 2016

Meet us at…

7 December 2016

www.terma.com

www.terma.dk/press/newsletter

www.linkedin.com/company/terma-a-s

www.twitter.com/terma_global

www.youtube.com/user/TermaTV

