Institut Superieur de I’Aéronautique et de ’'Espace

“TASTE Multi-core

ISAE / ONERA
-y Jérome Hugues / Claire Pagetti
|§ ﬂhﬂ December 2016 ONERA

de lEspace THE FRENCH AEROSPACE LAB

General information

>
>

Duration of the project: 12 months

Consortium

» Combined expertise in TASTE toolset, programming of multicore systems, including
RTEMS and Xtratum

» J. Hugues, ISAE: member of the TASTE project since its inception, expert on AADL,
lead of the Ocarina project

» C. Pagetti, ONERA: expertise in the design and implementation of safety-critical
applications on multicore systems

» E. Noulard, ONERA: expertise in low-level programming and RTOS, expertise in
many/multicore systems

Global effort of 2.5 man months

1. Introduction
» Reminder on TASTE
» Objectives of TASTE-multi-core

2. Project inputs
» Executive layers: RTEMS & XtratuM
» Use cases: ROSACE & GCU

3. TASTE multi-core
» AADL extensions
» Tool chain

» Experiments

4. Conclusion & perspectives

TASTE process in a nutshell

AOCS

10 Hz /

Mode Management

g COMMI;‘?’ \ / State Mochine\
> U —2 r—- S
Sseua-al)
sensor data , !
— Deadline: 3 ms < }
actu;tors WCET: 1 ms ? :
AE W SCADE \ 'l
LEON2 \
1\ 1
\
WV !
WV P!
VY |
\)
\ \\ FDIR-command ::= ENUMERATED {
\\ \\ safe-mode,
\ N switch-to-redundant,
\ S
N ~<d
N }
~
~ ~
=~ = AOCS-tm ::= SEQUENCE {
AADL and ASN. 1 attitude Attitude-ty,
are combined to provide a formal, orbit Orbit-ty,
precise, and complete description
of the system architecture and data. }

4

to FDIR

TASTE process in a nutshell

@ Generate “application skeletons”
in Stmulink, SDL, C, and Ada

S BALDSe .

D S8)58 as 7 sl fr e G800 REAES [rmnr s e, O R g e e R T
| N —— -

e

All these steps are automated, thanks
* Languages with good power of expression

* AADL for architecture, ASN.1 for data typing,

e SDL, Simulink, SCADE, C, Ada, etc. for behavior
* Tool to support this approach

* TASTE toolchain (editors, code generators, orchestrator)

In the following, we focus in the Concurrency view level, leveraging AADL
TO put everything
J together on a real-time

[/ﬁ operating system
{ Task 4 /

Research on AADL @ ISAE

Architecture helps you focusing on the actual system | - A ADI_

Architectural patterns

AADL Procoss AADL Throad as AADL Data as

as Panion Ada Task object Ada Protected object
C\'J;"Cl.'"!_'lll’_",' wow s sC 2
Link to code/model i s ./

L : v
—-——.‘—'—'—- -
SR AS, \
o ¥ : .
Non-functional properties
N

Physical view

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability and code generation

Lead on the Ocarina toolset
Development of AADL:

4 books, tutorials, 30+ papers
Code generation :

Ada, C (POsIX, ARINC653, RTEMS)

TRL 6-7 with ESA (ECSS E-40)
SPARK, ACSL TRL 2-3
Scheduling: Cheddar, MAST

External metrics: stack usage
(gnatstack), WCET (Bound-T)

Architectural
Constraints/Requirements
checks

TRL 6, being standardized
Model checking: Petri Nets, LNT
TRL 2 (PhD contributions)
System engineering: SysMIL,
Capella TRL 2-3 (with IRT-SE)

Ocarina: an AADL code generator

http://www.openaadl.org

> Ocarina is a stand-alone tool for processing AADL models
» Free Open Source Software (as in *Free* speech and *Free* beer)

» Command-line, or integrated third-party tools
« OSATE (CMU/SEI), TASTE (ESA), AADL Inspector (Ellidiss)

> Code generation facilities target PolyORB-HI runtimes
» Ada HI integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded
» C ARINC653 for avionics systems
> Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, ...
> Written to meet most High-Integrity requirements

» Follow Ravenscar model of computations, static configuration of all elements
(memory, buffers, tasks, drivers, etc.)

> Contributions from PhD students, partners (SEI, ESA, ENIS)

1.

2.

3.

4.

»

»

Introduction

Reminder on TASTE

Objectives of TASTE-multi-core
Project inputs

TASTE multi-core

Conclusion & perspectives

Objectives

> Main objective: provide an implementation strategy to support multicore systems
in TASTE, for both regular and Time/Space Paritionning OS
» Evaluate extenstions to core technologies (AADL) and editors
» Use cases as driving example

> Inputs
» TASTE: Support for mono-core demonstrated, for POSIX, RTEMS
» AADL: Support for multicore in discussion, TSP supported (ARINC653 annex)

> Leverage public use cases
» Adapt them for AADL,
* code generation for RTEMS + POSIX
« Generation of configuration files for XtratuM
» Provide manual implementation for XtratuM
» Discuss modeling patterns for TASTE graphical tools

1.

2,

3.

4.

»

»

Introduction

Project inputs
Executive layers: RTEMS & XtratuM
Use cases; ROSACE & GCU

TASTE multi-core

Conclusion & perspectives

Executive layers: S & XtratuM

> RTEMS supports SMP architecture as part of RTEMS4.12

» No direct support for neither AMP (except through explicit multi-processing calls),
nor TSP configurations

» Support for drivers extensive, through direct contributions form Gaisler who also
implement the corresponding IP blocks
» Same drivers adapted from GR-RASTA, GR712RC and GR740 systems
« Support for: UART, Ethernet, SpaceWire, MIL1553 and CAN

XtratuM

> TSP (time and space partitioning) & multi-core for LEON3MP & NGMP

» support for TSP mode by construction, in mono or multi-core;
» drivers support is separated from kernel, on demand from FENTISS

> Programming

» Application = one or several partitions

» Partition = one or several slots, each with a start time and a length.
» Slot = execution of several tasks

> Configuration (or plan)
» MAF, length of repetition
» a setof slots
» static mapping

cl

c2

partition
/ slot

task

| ——

9
MAF Major Frame

1.

2,

3.

4.

»

»

Introduction
Project inputs
Executive layers: RTEMS & XtratuM
Use cases: ROSACE & GCU
TASTE multi-core

Conclusion & perspectives

Two use cases

>

ROSACE (Research Open-Source Avionics and Control Engineering)

» C. Pagetti, D. Saussié, R. Gratia, E. Noulard and P. Siron. “The ROSACE Case Study : From
Simulink Specification to Multi/Many-Core Execution”. In : 20th IEEE RTAS 2014

» Repository URL: https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy

» Content
« the SIMULINK specification (folder simulink)
« a checker to verify that an implementation fulfills the high level properties (folder checker)
* several implementations

GCU (Gestionnaire de Charge Utile / Payload Data Management System)

» Spacify consortium, « Etude de cas CNES : Modélisation Synoptic de la partie Commande /
Contréle du GCU (Gestionnaire de Charge Utile) », report 2010.

» Content
« Partial specification in Synoptic

Implementation for TASTE multi-core

> Implementation
» Common functional C code for all multi-core implementations
» Manual computation of off-line mapping
» Specific C code encapsulation for each paradigm model

> Execution settings
» Targets: Zynq board, LEON3MP
» Test case

Avionic use case: Longitudinal Flight Controller

> Longitudinal motion of a medium-range civil aircraft ,,,,.. R

in en-route phase FL360
» Cruise: maintains a constant altitude h and a o] —
constant airspeed Va FL300
» Change of cruise level subphases: _
commands a constant vertical speed Vz (rate of climb) Flght time

« Ex: FL300 — FL320 — FL340 — FL360
« FL300 = pressure altitude of 30000 ft

> Test case
» Change flight level to 11 000 feet signal Overshoot
» Expected results soses
_P1 Settling time: < 103 ‘ ‘ Steady-state
—P2 overshoot: < 10% | |
—P3 rise time: < 6s /. . Settling time

Rise time Time

Longitudinal flight controller architecture

oo Flight condition:
. 200 H nvironment
— engine T = simulation h = 10000 m, Va = 230 m/s
200Hz> aircraft_dynamics
r— elevator S V. vertical speed
e Va true airspeed
10 Hz .
—— Outputs h altitude
Il hc Controller . .
—_ =1 ay vertical acceleration
Pec 50Hz Vg, 50 Hz r 100 H q pitch rate
R ¢ X h 7
Vz_control altitude_hold i h_filter Ve | vertical speed
Vaf true airspeed
azs 1001 o Filtered outputs hs altitude
az_filter az vertical acceleration
Vg U qf pitch rate
. \ i
Vz_filter 2 Reference inputs he a!“t“de command
Va. airspeed command
qr 100 Hz Commanded inputs Ve vertical speed command
S0 Hz g_filter d p e, elevator deflection command
Va_control 00 1 Sth throttle command
i - ﬂH.Z, Vag . 1 V4 Adrcraft i 6ecc elevator deflection
I va_c 1 Va_filter treraft inputs T engine thrust

— 5filters consolidate the measured outputs provided by the sensors
— 3 controllers track accurately: altitude (h), vertical speed (V,.) and airspeed commands (V)
— rate choices
1. for controllers:
— closed-loop system with the continuous-time controller can tolerate a pure time delay of 1's
before destabilizing =» sampling period < 1 Hz
— performances =» sampling period < 10 Hz
2. for environment: 200 Hz to model a continuous-time phenomenon

Off-line mapping for ROSACE

> Mono-core schedule

P1: h_filter, az_filter,
Vz_filter, g_filter,
PO: Aircraft_dynamics Va_filter, altitude_hold P2:Vz_control, Va_control PO: elevator, engine

v

1ms 2ms 3ms 4 ms 5ms

> Dual-core scheduling

P1: h_filter, az_filter,
PO: Aircraft_dynamics Vz_filter P2: Vz_control PO: elevator
1ms 2 ms 3ms 4 ms 5ms
P3: g_filter, Va_filter,
altitude_hold P4:Va_control P5: engine
1ms 2 ms 3ms 4 ms 5ms

Specifics in coding

> RTEMS
» POSIX implementation

> XtratuM
» Communication between partitions are done via XtratuM sampling ports

» Code skeleton

void PartitionMain (void){
.. init ... while (1) {
aircraft_dynamics(delta_e, T, &res);
send_buf(res.h, porth);

delta_th_c = rec_buf(portdthc);
T = engine(delta_th_c);
delta_e_c = rec_buf(portdec);
delta_e = elevator(delta_e_c);
XM_idle_self();}

}

> log passed the checker

Space use case: Payload Data Management System

> apply commands from the ground to move in a given mode and to confirm to the
ground that requests have been correctly applied

> event triggered architecture

GCU architecture

GCU Go to Init_standby
Go to Init_standby ha
W| Init_standby [«
CC J,Go to Mode_i
Go to Downgraded e —
Wait_i Go tollnit_starld by
Routing & !
i Go tg e iv* Mode_i |
formatting ! ~T :
Mode_1 Mode_0 l
\/ |
§o to Downgrade(!
—)Downgraded I
<= = = Mission
Hypervisor / HW
Ground P/F On board On board On board 13
Instrument1 || Instrument 2 ()
[state | . OFF |
i E on) | off
ON
measure / on Ix D
/ off Ix / go to mode M
measure

Example of GCU test case

PF CC MISSION | | |
I]] 3
\C%O\B\ InitStandby OFF OFF OFF
Mode
Go to Mode_0
~ Startll
) Start 12
Wait_0 R
ON
) 1 ON —_—
ON
2 ON
MODE O
) Mode_0 —
) Mode 0
Measures 11 ?
Measures 11 ? R
data
) data

Off-line mapping for GCU

> Two mono-core schedules

PO: MISSION P1: CC, PF P2:11,12,13
40 ms 80 ms 120 ms
PO: MISSION P1: CC, PF P2:11,12,13 P1: CC, PF
40 ms 80 ms 120 ms 160 ms
> One dual-core schedule
P2:11,12 P1:CC PO: MISSION P1: CC
P3: PF P4: 13
40 ms 60 ms 80 ms

20 ms

Specifics in coding

> RTEMS
» POSIX implementation

> XtratuM
» Communication between partitions are done via XtratuM sampling ports
» Code skeleton (similar ROSACE)

> log compliant with expected behaviours

Response times for the schedules

> Mono-core schedule 1

ON PF: ModeO

go to mode0 Mode0
start 11, 12 measure value

PG

> Mono-core schedule 2

ON PF: ModeO

go to mode0
ModeO

measure value

start 11, 12

1.

2,

3.

4.

»

»

»

Introduction

Project inputs

TASTE multi-core
AADL extensions
Tool chain
Experiments

Conclusion & perspectives

About the TASTE-DV

> The TASTE Deployment View gathers
» The definition of the hardware platform

» Binding of functions to this platform

> Concepts: node (OS), processor, partition (memory space)

» Platform read from library of AADL models
» Shared patterns between TASTE-*V and Ocarina

* PEfunchon? =
PP AL
L Floassy
L Floatay
L Floawy
L Floawy
L iAeen, S
L IAran
L IndAren
L ImAren
FU Floaty
FLons
S J Saa ¥
L4 S E
Pl

P iiAsen

Data Vieow Imedace View ® | Deployment

hocsel

View L2 Concurrent

A% T
.

!

W L T
| famction?

2

J

l

MUAAS

Definition of multicore processors: AADL

> Ongoing work as part of AADLv3 work

virtual processor a_core end a_core;

virtual processor implementation a_core.impl end a_core.impl;
processor implementation POSIX_CPU.Cores4

subcomponents

CpuO : virtual processor a_core.impl {Processor_Properties::Core_Id =>0;};
Cpul : virtual processor a_core.impl {Processor_Properties::Core_Id => 1;};

end POSIX_CPU.Cores4;

> Add one property to specify id of the core

-- Core #1 binding
Actual_Processor_Binding => (reference (Hardware.Cpul))
applies to Software.Aircraft_Dynamics;

» TASTE-CV/AADL: support done for POSIX, RTEMS
» TASTE-DV: needs additional support to capture bindings

Definition of multicore processors: TASTE-*V

> Extensions of existing TASTE-DV concepts
» One node, multiple cores inside, one partition per core
> Could be implemented by
» Updating parser of TASTE-DV to support AADL pattern
» Extending library of AADL models with reference design
« Natural candidates: GR712RC, NGMP, ARM A9, etc.

' Node GR712/RTEMS
Core #0 Core #1
Partition #0 ' Partition #0

Definition of TSP: memory

> Process can be bound to specific memory location
» Supported as part of regular AADLV2 language

memory implementation myram.sdram extends myram.stram
subcomponents
segmentl : memory segment.i {Base_Address => 16#40100000#;
Byte Count =>524 288;};
segment2 : memory segment.i {Base_Address => 16#40180000%#;
Byte_Count => 524 288;};
end myram.sdram;

> Impact on TASTE
» Additional tabular editor to capture parameters for a node
» Additional legality rules to check configuration is sound
« Already done use REAL annex language in UML&AADL'10
» Supported as part of XtratuM configuration backend

Definition of TSP: partitions - AADL

> Follow ARINC653 annex document

processor implementation leon3.xtratum_partitions extends leon3.xtratum
subcomponents
PO : virtual processor xtratum_partition.generic
{ Deployment::Execution_Platform => LEON3_XM3;
ARINC653::Partition_ldentifier => 0;
ARINC653::Partition_Name =>"P0"; 1}

> Same impact as memory partition on TASTE toolchain

properties
ARINC653::Module_Schedule => ([Partition => reference (PO);
Duration =>2 ms;
Periodic_Processing_Start => true;],

1.

2,

3.

4.

»

»

»

Introduction

Project inputs

TASTE multi-core
AADL extensions
Tool chain
Experiments

Conclusion & perspectives

Definition of TSP: partitions —

>

>

Extensions of existing TASTE-DV concepts

» One node, one core, no partition (default), capability to add partitions
Could be implemented by

» Updating parser of TASTE-DV to support AADL pattern

» Tabular editor to configure TSP parameters, attached to the node (definition of the
RTOS abstraction)

GUI: need a graphical icon for TSP configuration, to distinguish from regular non-
TSP

Node LEON3/XtratuM

Core #0

Partition #0 | |Partition #1

Combining SMP and TSP

>

Done as a combination of the previous patterns

» AADL: use virtual processors for either core or partitions

» TASTE-DV: combine previous approaches

Same recommendations as previously

» # of cores is static, one editor per core to time config., one editor per node for

memory

Node GR712RC/XtratuM

Core #0

Partition #0 | Partition #1

Core #1

Partition #2 'Partition #3

Other topics

> For now, focused mostly on modeling TSP/multicore

> Initial study illustrated needs to constraint designs
» Exactly one core per thread

Exactly one core per partition

Verification of TSP configuration

» Must add a specific design checker in TASTE. For the moment, it is part of the
vertical transformation, too late !

> Also, need to perform optimizations of designs
» E.g. place threads to ensure schedulability
» Sequence of partitions to optimize latency

> Call for a specific TASTE-Configurator tool

>

v

>

v

Ocarina components for Multicore

> Updated property sets
» ARINC633 (new release, per AS5506/1A) for TSP
» Property for specifying cores for multi-core
> Updated PolyORB-HI/C runtime
» Support for multicore for RTEMS and RT-POSIX
> Updated backends
» New properties
» PolyORB-HI/C: consider SMP
» XtratuM configuration: updates for SMP and support of 4.2.1
> Integrated to GitHub and Gitlab (ESA) master branch

1.

2,

3.

4.

»

»

»

Introduction

Project inputs

TASTE multi-core
AADL extensions
Tool chain
Experiments

Conclusion & perspectives

Implementation work

> For ROSACE and GCU, delivery of

> XtratuM manual implementation, tested on ARM9 2 cores (ONERA)

> AADL/TASTE-CV implementation done for the following configurations
» RT-POSIX case, 1-core and 4-core: code generation and execution
» RTEMS (mono-core + SMP): code generation and execution

» XtratuM (mono-core + SMP): configuration generation, compilation of XML
generated by XtratuM tools

* Note: support of a RTEMS BSP for XtratuM in PolyORB-HI/C could not be
tested, status unknown

» Log reports provided as reference output from XtratuM runs

> Addition of communication: target altitude configured from an external source:
delayed due to lack of SpaceWire in RTEMS/SMP

» Mitigation solution is to implement these outside of this study, in the scope of
PERASPERA once RTEMS 4.11 stabilizes

1.

2,

3.

4

Introduction

Project inputs

TASTE multi-core

Conclusion & perspectives

Conclusion

> Study defined two case studies to evaluate support for SMP and TSP in TASTE
> Case studies helped to
» Derive requirements for TASTE-DV updates
« Ellidiss confident these could be implemented using the existing technology
» Consolidate support of SMP and TSP in TASTE-CV/AADL
* Front-end, property sets and backends prepared
— SMP for RTEMS and POSIX; TSP for Xtratum
— Code generation update for RTEMS and POSIX
— Generation of configuration for XtratuM
> All contributions will be integrated to TASTE VM

