
Institut Supérieur de l’Aéronautique et de l’Espace

TASTE Multi-core
ISAE / ONERA

Jérôme Hugues / Claire Pagetti
December 2016

> Duration of the project: 12 months
> Consortium

» Combined expertise in TASTE toolset, programming of multicore systems, including
RTEMS and Xtratum

» J. Hugues, ISAE: member of the TASTE project since its inception, expert on AADL,
lead of the Ocarina project

» C. Pagetti, ONERA: expertise in the design and implementation of safety-critical
applications on multicore systems

» E. Noulard, ONERA: expertise in low-level programming and RTOS, expertise in
many/multicore systems

> Global effort of 2.5 man months

General information

12/07/2016 TASTE Multicore -- ESA Final Days 2

1. Introduction
» Reminder on TASTE
» Objectives of TASTE-multi-core

2. Project inputs
» Executive layers: RTEMS & XtratuM
» Use cases: ROSACE & GCU

3. TASTE multi-core
» AADL extensions
» Tool chain
» Experiments

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 3

TASTE process in a nutshell

AOCS

Control law10 Hz

sensor data

actuators

to FDIR
Mode Management

State Machine

Deadline:	3	ms
WCET:	1	ms

SCADE
LEON2

SDL
LEON2

FDIR-command ::= ENUMERATED {
safe-mode,
switch-to-redundant,
...

}

AOCS-tm ::= SEQUENCE {
attitude Attitude-ty,
orbit Orbit-ty,
...

}

AADL and ASN.1
are combined to provide a formal,
precise, and complete description

of the system architecture and data.

process ABB1

idle

PI1

RI1
(myData)

wait_ABB2

wait_ABB2

PI2

idle

FBY

1 falsestop

statusstart

12/07/2016 TASTE Multicore -- ESA Final Days 4

TASTE process in a nutshell

� Generate a software
real-time architecture

Task 1

Task 3
Task 4

Task 2
Task 1

Task 3
Task 4

Task 2

Task 1

Task 3

Task 2
Task 1

Task 3

Task 2

� Generate glue code
to put everything
together on a real-time
operating system

12/07/2016 TASTE Multicore -- ESA Final Days

� Generate “application skeletons”
in Simulink, SDL, C, and Ada

system basic_fv
USE Datamodel;

SIGNAL basictotc (T_TM);

SIGNAL tcommand (T_HLTC_PLUS);

SIGNAL basictocontrol (T_CONTROL_IN);

SIGNAL controldow ntobasic (T_CONTROL_DOWN_OUT);

SIGNAL controluptobasic (T_CONTROL_UP_OUT);

SIGNAL cyclicactivationimplementation;

procedure aplc_basic_op COMMENT '#c_predef';FPAR
 IN thrusters_opening T_THRUSTERS_OPENING,
 IN pfs_iw m_arming_relay_status_on T_PFS_IWM_ARMING_RELAY_STATUS_ON,
 IN pfs_hltc_red_button_is_on T_PFS_HLTC_RED_BUTTON_IS_ON,
 IN msu_id T_MSU_ID,
 IN pfs_ew m_msuy_msux_hs T_PFS_EWM_MSU_MSU_HS,
 IN f tcp_health_status T_FTCP_HEALTH_STATUS,
 IN pfs_ew m_dtg12_msu T_PFS_EWM_DTG12_MSU,
 IN hltc T_HLTC,
 IN end_boost_is_reached T_END_BOOST_IS_REACHED,
 IN sun_is_aimed T_SUN_IS_AIMED,
 IN/OUT pfs_ew c_msu_pde_t T_PFS_EWC_MSU_PDE_T,
 IN/OUT pde_cmd_a T_PDE_CMD_A,
 IN/OUT dpu_cmd T_DPU_CMD,
 IN/OUT set_pfs_ew c_msu_dtg_mode_coarse T_ON_OFF_CMD,
 IN/OUT hltm T_HLTM,
 IN/OUT pfs_ew m_msux_msuy_hs T_PFS_EWM_MSU_MSU_HS,
 IN/OUT cam_mode T_CAM_MODE,
 IN/OUT controller_to_be_activated T_CONTROLLER_TO_BE_ACTIVATED,
 IN/OUT navigation_output T_NAVIGATION_OUTPUT;
 EXTERNAL;

procedure mysimulink COMMENT '#c_predef';FPAR
 IN my_in T_FOR_SIMULINK_IN,
 IN my_in2 T_control_in,
 IN/OUT my_out T_FOR_SIMULINK_OUT,
 IN/OUT my_out2 T_Control_in;
 EXTERNAL;

c

tcommand,
controldowntobasic,
controluptobasic,
cyclicactivationimplementation

basictotc,
basictocontrol

basic_fvAll	these	steps	are	automated,	thanks
• Languages	with	good	power	of	expression

• AADL	for	architecture,	ASN.1	for	data	typing,	
• SDL,	Simulink,	SCADE,	C,	Ada,	etc.	for	behavior

• Tool	to	support	this	approach
• TASTE	toolchain (editors,	code	generators,	orchestrator)

In	the	following,	we	focus	in	the	Concurrency	view	level,	leveraging	AADL

5

Lead	on	the	Ocarina	toolset
Development	of	AADL:
4	books,	tutorials,	30+	papers
Code	generation	:	
Ada,	C	(POSIX,	ARINC653,	RTEMS)

TRL	6-7	with	ESA	(ECSS	E-40)
SPARK,	ACSL	TRL	2-3
Scheduling:	Cheddar,	MAST
External	metrics:	stack	usage	
(gnatstack),	WCET	(Bound-T)
TRL	4-5	with	ESA
Architectural	
Constraints/Requirements	
checks
TRL	6,	being	standardized
Model	checking:	Petri	Nets,	LNT
TRL	2	(PhD	contributions)
System	engineering:	SysML,	
Capella TRL	2-3	(with	IRT-SE)

Research on AADL @ ISAE

Link to code/model

Non-functional properties

Architectural patterns

Architecture helps you focusing on the actual system

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability and code generation

12/07/2016 TASTE Multicore -- ESA Final Days 6

Ocarina: an AADL code generator
http://www.openaadl.org

> Ocarina is a stand-alone tool for processing AADL models
» Free Open Source Software (as in *Free* speech and *Free* beer)
» Command-line, or integrated third-party tools

• OSATE (CMU/SEI), TASTE (ESA), AADL Inspector (Ellidiss)
> Code generation facilities target PolyORB-HI runtimes

» Ada HI integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded
» C ARINC653 for avionics systems

> Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, …

> Written to meet most High-Integrity requirements
» Follow Ravenscar model of computations, static configuration of all elements

(memory, buffers, tasks, drivers, etc.)
> Contributions from PhD students, partners (SEI, ESA, ENIS)

12/07/2016 TASTE Multicore -- ESA Final Days 7

1. Introduction
» Reminder on TASTE
» Objectives of TASTE-multi-core

2. Project inputs

3. TASTE multi-core

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 8

> Main objective: provide an implementation strategy to support multicore systems
in TASTE, for both regular and Time/Space Paritionning OS
» Evaluate extenstions to core technologies (AADL) and editors
» Use cases as driving example

> Inputs
» TASTE: Support for mono-core demonstrated, for POSIX, RTEMS

» AADL: Support for multicore in discussion, TSP supported (ARINC653 annex)

> Leverage public use cases
» Adapt them for AADL,

• code generation for RTEMS + POSIX
• Generation of configuration files for XtratuM

» Provide manual implementation for XtratuM
» Discuss modeling patterns for TASTE graphical tools

Objectives

12/07/2016 TASTE Multicore -- ESA Final Days 9

1. Introduction

2. Project inputs
» Executive layers: RTEMS & XtratuM
» Use cases: ROSACE & GCU

3. TASTE multi-core

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 10

> RTEMS supports SMP architecture as part of RTEMS4.12
» No direct support for neither AMP (except through explicit multi-processing calls),

nor TSP configurations
» Support for drivers extensive, through direct contributions form Gaisler who also

implement the corresponding IP blocks
• Same drivers adapted from GR-RASTA, GR712RC and GR740 systems
• Support for: UART, Ethernet, SpaceWire, MIL1553 and CAN

Executive layers: RTEMS & XtratuM

12/07/2016 TASTE Multicore -- ESA Final Days 11

> TSP (time and space partitioning) & multi-core for LEON3MP & NGMP
» support for TSP mode by construction, in mono or multi-core;
» drivers support is separated from kernel, on demand from FENTISS

> Programming
» Application = one or several partitions
» Partition = one or several slots, each with a start time and a length.
» Slot = execution of several tasks

> Configuration (or plan)
» MAF, length of repetition
» a set of slots
» static mapping

XtratuM

12/07/2016 TASTE Multicore -- ESA Final Days 12

c1

c2

MAF	Major	Frame

partition	
/	slot

task

1. Introduction

2. Project inputs
» Executive layers: RTEMS & XtratuM
» Use cases: ROSACE & GCU

3. TASTE multi-core

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 13

> ROSACE (Research Open-Source Avionics and Control Engineering)
» C. Pagetti, D. Saussié, R. Gratia, E. Noulard and P. Siron. “The ROSACE Case Study : From

Simulink Specification to Multi/Many-Core Execution”. In : 20th IEEE RTAS 2014
» Repository URL: https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy
» Content

• the SIMULINK specification (folder simulink)
• a checker to verify that an implementation fulfills the high level properties (folder checker)
• several implementations

> GCU (Gestionnaire de Charge Utile / Payload Data Management System)
» Spacify consortium, « Etude de cas CNES : Modélisation Synoptic de la partie Commande /

Contrôle du GCU (Gestionnaire de Charge Utile) », report 2010.
» Content

• Partial specification in Synoptic

Two use cases

12/07/2016 TASTE Multicore -- ESA Final Days 14

> Implementation
» Common functional C code for all multi-core implementations
» Manual computation of off-line mapping
» Specific C code encapsulation for each paradigm model

> Execution settings
» Targets: Zynq board, LEON3MP
» Test case

Implementation for TASTE multi-core

12/07/2016 TASTE Multicore -- ESA Final Days 15

Overshoot

Settling time

Rise time

Steady−state

Time

Signal

Avionic use case: Longitudinal Flight Controller

> Longitudinal motion of a medium-range civil aircraft
in en-route phase
» Cruise: maintains a constant altitude h and a

constant airspeed Va
» Change of cruise level subphases:
commands a constant vertical speed Vz (rate of climb)

• Ex: FL300 → FL320 → FL340 → FL360
• FL300 = pressure altitude of 30000 ft

!"#$#%&'

!"#$$

!"#%$

!"#&$

!"#'$

("$)*#+#$,'

> Test case
» Change flight level to 11 000 feet
» Expected results

-P1 settling time: ≤ 10s
-P2 overshoot: ≤ 10%
-P3 rise time: ≤ 6s

12/07/2016 TASTE Multicore -- ESA Final Days 16

Longitudinal flight controller architecture

engine

elevator

200 Hz aircraft_dynamics

200 Hz

Vz_control
50 Hz

Va_control
50 Hz

altitude_hold
50 Hz

h_filter
100 Hz

Va_filter
100 Hz

Vz_filter

100 Hz

q_filter
100 Hz

az_filter
100 Hz

h_c
10 Hz

Va_c
10 Hz

Controller

Environment
simulationT

δ
e

δec

δthc

Vzc

Vz

h

az

q

Va

azf

hf

Vzf

qf

Vaf

hc; the autopilot was validated and verified in the continuous-
time domain by studying the behaviour of the aircraft in the
neighbourhood of this flight condition.

The SIMULINK scheme in Figure 2 is actually the discretiza-
tion of our original SIMULINK scheme. It is divided into
two parts: on the one hand, the Environment Simulation part
represents the real system that is to be controlled, i.e. the
aircraft as well as the engines and elevators, and, on the other
hand, the Controller part represents the different controllers
(vertical speed, airspeed, altitude controllers) as well as filters
on the measured outputs and reference inputs.

Typically, the Controller part would be implemented on a
target, and for hardware-in-the-loop validation, the target would
be connected to the aircraft model coded in SIMULINK. To
alleviate this procedure, it was decided to program also the
aircraft model on the target and to run it solely on a dedicated
core to minimize interactions with other executing tasks.

Each component of the Environment Simulation part is
modelled by ordinary differential equations (ODEs), usually
as continuous-time nonlinear state equations of the form
ẋ = f(x, u, t). They are approximately solved by numerical
methods like Euler or Runge-Kutta methods with fixed or
variable time steps. Usually, the smaller the time step is, the
more precise but time-consuming the solution is. For our case
study, Euler method with a time step of � = 0.005ms (200
Hz) proved sufficient to deliver a reliable solution. As 100 Hz
is the highest rate used in the controller implementation, it was
decided to use a greater rate of 200 Hz for what is supposed
to be a continuous-time phenomenon.

Control engineers do not resort to the same approach
to digitalize their controllers. Indeed, it is inconvenient to
implement a controller with a numerical integration routine
such as Runge-Kutta method. Moreover the discretization
must preserve frequency-domain characteristics as much as
possible, so the performance and stability requirements are
still met. Therefore, dedicated techniques other than numerical
integration are used to convert a continuous-time controller
K(s) to its discrete-time version K(z); these techniques all
lead to difference equations. Among these techniques, the
bilinear transformation (also known as Tustin’s method) and
the zero-order holder method are the most popular ones [9].

The considered outputs are listed in Tab. I and are measured
by dedicated sensors. They are modelled as low-pass filters
with bandwidth reflecting the nature of the measured signals.
For example, speed measures are typically slower than gyro-
scopic or accelerometer measures. Moreover, digital filtering
is performed before feeding the measures to the controller.
Even simplistic, our filtered sensor modelling is still sound and
works at a basic rate of 100 Hz. The three controller blocks
are first digitalized with a 20ms sampling period (50 Hz rate)
but higher sampling periods will be tested as well.

C. Verification objective
As mentioned in the introduction, the goal of our autopilot

is to track accurately altitude and airspeed commands (resp.
hc and Vac). The airspeed control consists of a single control

Table I
VARIABLES

Outputs

Vz vertical speed
Va true airspeed
h altitude
az vertical acceleration
q pitch rate

Filtered outputs

Vzf vertical speed
Vaf true airspeed
hf altitude
azf vertical acceleration
qf pitch rate

Reference inputs hc altitude command
Vac airspeed command

Commanded inputs Vzc vertical speed command
�ec elevator deflection command
�thc throttle command

Aircraft inputs �ec elevator deflection
T engine thrust

loop whereas the altitude control is split in two stages; the
altitude command hc is first translated into a Vzc command by
the altitude hold controller and the vertical speed controller
then tracks Vzc .

The design process first focused on the internal Va and
Vz loops (resp. Va_control and Vz_control blocks). In
addition to stability and robustness constraints, requirements
were imposed on time responses for unit-step demands in Va

and Vz . They were classically expressed in terms of settling
time, percent overshoot and rise time as summarized in Tab.
II. Moreover, decoupling is sought, i.e. a demand in Va should
slightly affect Vz , and vice versa. To this end, Figure 3
illustrates time-responses for separate step inputs. On the top
figures, an airspeed variation of 5m/s from the initial airspeed
Va = 230m/s is first commanded, while Vz lies around 0. On
the bottom figures, a vertical speed demand of Vzc = 2.5m/s
leaves airspeed Va almost invariant. The demand Vzc = 2.5m/s
will be the maximum vertical speed commanded by the altitude
controller.

Table II
REQUIREMENTS AND VERIFICATION IN SIMULINK

Property Objective Results in
SIMULINK

P1 Settling time Vz � 10 s 8.4 s
Va � 20 s 16.5 s

P2 % Overshoot Vz � 10% 4%
Va � 10% 3.9%

P3 Rise time Vz � 6 s 5.5 s
Va � 12 s 11.2 s

As indicated by its name, the altitude-hold autopilot
(altitude_hold) is used in cruise to maintain a com-
manded altitude (or flight level FLxxx)2 in spite of pertur-
bations. For fuel economy reason, the pilot can command step
climbs of 2000 or 4000 feet when needed (e.g. FL300 �
FL340). Our controller logic is as follows: a constant vertical
speed command (Vzc = 2.5m/s is first imposed so the aircraft
gains altitude, then, within 50m of the target flight level, the

2For example, FL300 denotes a pressure altitude of 30000 ft.

Flight condition:
h = 10000 m, Va = 230 m/s

- 5 filters consolidate the measured outputs provided by the sensors
- 3 controllers track accurately: altitude (hc), vertical speed (Vzc) and airspeed commands (Vac)
- rate choices

1. for controllers:
- closed-loop system with the continuous-time controller can tolerate a pure time delay of 1 s
before destabilizing è sampling period ≤ 1 Hz
- performances è sampling period ≤ 10 Hz

2. for environment: 200 Hz to model a continuous-time phenomenon

12/07/2016 TASTE Multicore -- ESA Final Days 17

> Mono-core schedule

> Dual-core scheduling

Off-line mapping for ROSACE

12/07/2016 TASTE Multicore -- ESA Final Days 18

P0:	Aircraft_dynamics P0:	elevator,	engine

1	ms

P2:	Vz_control,	Va_control

P1:	h_filter,	az_filter,	
Vz_filter,	q_filter,	

Va_filter,	altitude_hold	

2	ms 3	ms 4	ms 5	ms

P0:	Aircraft_dynamics P0:	elevator

1	ms

P2:	Vz_control
P1:	h_filter,	az_filter,	

Vz_filter

2	ms 3	ms 4	ms 5	ms

P5:	engine

1	ms

P4:	Va_control
P3:	q_filter,	Va_filter,	

altitude_hold

2	ms 3	ms 4	ms 5	ms

> RTEMS
» POSIX implementation

> XtratuM
» Communication between partitions are done via XtratuM sampling ports
» Code skeleton
void PartitionMain (void){

... init … while (1) {
aircraft_dynamics(delta_e, T, &res);
send_buf(res.h, porth);
…
delta_th_c = rec_buf(portdthc);
T = engine(delta_th_c);
delta_e_c = rec_buf(portdec);

delta_e = elevator(delta_e_c);
XM_idle_self();}

}

> log passed the checker

Specifics in coding

12/07/2016 TASTE Multicore -- ESA Final Days 19

> apply commands from the ground to move in a given mode and to confirm to the
ground that requests have been correctly applied

> event triggered architecture

Space use case: Payload Data Management System

12/07/2016 TASTE Multicore -- ESA Final Days 20

GCU architecture

12/07/2016 TASTE Multicore -- ESA Final Days 21

CC

Mission

GCU

state

measure	/	on	Ix
/	off	Ix	/	go	to	mode	M

Init_standby

Wait_i

Mode_1 Mode_0

Downgraded	

Go	to	Mode_i

Go	to	Downgraded	

Go	to	Downgraded	
Go	to	Init_standby

Go	to	Mode_iGo	to	Mode_i

Go	to	Init_standby	
Go	to	Init_standby

OFF

ON
offon

measure

Example of GCU test case

12/07/2016 TASTE Multicore -- ESA Final Days 22

PF CC MISSION

Go	to	
Mode_0

Go	to	Mode_0

Start	I1

Start	I2

I
1

I
2

I
3

OFF OFF OFFInitStandby

Wait_0

I1	ON
ON

ON
I2	ON

MODE_0
Mode_0

Mode_0

Measures	I1	?
Measures	I1	?

data

data

> Two mono-core schedules

> One dual-core schedule

Off-line mapping for GCU

12/07/2016 TASTE Multicore -- ESA Final Days 23

P0:	MISSION

40	ms

P1:	CC,	PF P2:	I1,	I2,	I3

80	ms 120	ms

P2:	I1,I2

20	ms

P3:	PF

40	ms 60	ms

P1:	CC P0:	MISSION

P4:	I3

P1:	CC

80	ms

P0:	MISSION

40	ms

P1:	CC,	PF P2:	I1,	I2,	I3

80	ms 120	ms

P1:	CC,	PF

160	ms

> RTEMS
» POSIX implementation

> XtratuM
» Communication between partitions are done via XtratuM sampling ports
» Code skeleton (similar ROSACE)

> log compliant with expected behaviours

Specifics in coding

12/07/2016 TASTE Multicore -- ESA Final Days 24

> Mono-core schedule 1

> Mono-core schedule 2

Response times for the schedules

12/07/2016 TASTE Multicore -- ESA Final Days 25

P1 P2 P0 P1 P2 P0 P1 P2 P0 P1

go	to	mode0
start	I1,	I2

ON

Mode0

PF:	Mode0

P1 P0 P1 P2 P0 P1

go	to	mode0

start	I1,	I2

ON

Mode0

PF:	Mode0

P1

P1 P2 P0 P1

measure value

P1 P0 P1 P2

measure value

P1

1. Introduction

2. Project inputs

3. TASTE multi-core
» AADL extensions
» Tool chain
» Experiments

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 26

> The TASTE Deployment View gathers
» The definition of the hardware platform
» Binding of functions to this platform

> Concepts: node (OS), processor, partition (memory space)
» Platform read from library of AADL models
» Shared patterns between TASTE-*V and Ocarina

About the TASTE-DV

12/07/2016 TASTE Multicore -- ESA Final Days 27

> Ongoing work as part of AADLv3 work

> Add one property to specify id of the core

» TASTE-CV/AADL: support done for POSIX, RTEMS
» TASTE-DV: needs additional support to capture bindings

Definition of multicore processors: AADL

12/07/2016 TASTE Multicore -- ESA Final Days 28

virtual	processor a_core end a_core;		
virtual	processor	implementation a_core.impl end a_core.impl;		
processor	implementation	POSIX_CPU.Cores4		
subcomponents			

Cpu0	:	virtual	processor	a_core.impl {Processor_Properties::Core_Id =>	0;};				
Cpu1	:	virtual	processor	a_core.impl {Processor_Properties::Core_Id =>	1;};

-- …
end POSIX_CPU.Cores4;

﻿-- Core	#1	binding				
Actual_Processor_Binding =>	(reference	(Hardware.Cpu1))	
applies	to	Software.Aircraft_Dynamics;												

> Extensions of existing TASTE-DV concepts
» One node, multiple cores inside, one partition per core

> Could be implemented by
» Updating parser of TASTE-DV to support AADL pattern
» Extending library of AADL models with reference design

• Natural candidates: GR712RC, NGMP, ARM A9, etc.

Definition of multicore processors: TASTE-*V

12/07/2016 TASTE Multicore -- ESA Final Days 29

> Process can be bound to specific memory location
» Supported as part of regular AADLv2 language

> Impact on TASTE
» Additional tabular editor to capture parameters for a node
» Additional legality rules to check configuration is sound

• Already done use REAL annex language in UML&AADL’10
» Supported as part of XtratuM configuration backend

Definition of TSP: memory

12/07/2016 TASTE Multicore -- ESA Final Days 30

memory	implementation	myram.sdram extendsmyram.stram
subcomponents
segment1	:	memory	segment.i {Base_Address =>	16#40100000#;	

Byte_Count =>	524_288;};				
segment2	:	memory segment.i {Base_Address =>	16#40180000#;	

Byte_Count =>	524_288;};		
end	myram.sdram;

> Follow ARINC653 annex document

> Same impact as memory partition on TASTE toolchain

Definition of TSP: partitions – AADL

12/07/2016 TASTE Multicore -- ESA Final Days 31

﻿processor	implementation	leon3.xtratum_partitions extends	leon3.xtratum		
subcomponents
P0	:	virtual	processor	xtratum_partition.generic
{	Deployment::Execution_Platform =>	LEON3_XM3;						
ARINC653::Partition_Identifier =>	0;						
ARINC653::Partition_Name =>	"P0";				};

-- …

properties
ARINC653::Module_Schedule =>			([Partition	=>	reference (P0);															

Duration		=>	2	ms;															
Periodic_Processing_Start =>	true;],											

-- …	

1. Introduction

2. Project inputs

3. TASTE multi-core
» AADL extensions
» Tool chain
» Experiments

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 32

> Extensions of existing TASTE-DV concepts
» One node, one core, no partition (default), capability to add partitions

> Could be implemented by
» Updating parser of TASTE-DV to support AADL pattern
» Tabular editor to configure TSP parameters, attached to the node (definition of the

RTOS abstraction)
> GUI: need a graphical icon for TSP configuration, to distinguish from regular non-

TSP

Definition of TSP: partitions – TASTE-DV

12/07/2016 TASTE Multicore -- ESA Final Days 33

> Done as a combination of the previous patterns
» AADL: use virtual processors for either core or partitions
» TASTE-DV: combine previous approaches

> Same recommendations as previously
» # of cores is static, one editor per core to time config., one editor per node for

memory

Combining SMP and TSP

12/07/2016 TASTE Multicore -- ESA Final Days 34

> For now, focused mostly on modeling TSP/multicore
> Initial study illustrated needs to constraint designs

» Exactly one core per thread
» Exactly one core per partition
» Verification of TSP configuration
» Must add a specific design checker in TASTE. For the moment, it is part of the

vertical transformation, too late !
> Also, need to perform optimizations of designs

» E.g. place threads to ensure schedulability
» Sequence of partitions to optimize latency

> Call for a specific TASTE-Configurator tool

Other topics

12/07/2016 TASTE Multicore -- ESA Final Days 35

> Updated property sets
» ARINC653 (new release, per AS5506/1A) for TSP
» Property for specifying cores for multi-core

> Updated PolyORB-HI/C runtime
» Support for multicore for RTEMS and RT-POSIX

> Updated backends
» New properties
» PolyORB-HI/C: consider SMP
» XtratuM configuration: updates for SMP and support of 4.2.1

> Integrated to GitHub and Gitlab (ESA) master branch

Ocarina components for Multicore

12/07/2016 TASTE Multicore -- ESA Final Days 36

1. Introduction

2. Project inputs

3. TASTE multi-core
» AADL extensions
» Tool chain
» Experiments

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 37

> For ROSACE and GCU, delivery of
> XtratuM manual implementation, tested on ARM9 2 cores (ONERA)
> AADL/TASTE-CV implementation done for the following configurations

» RT-POSIX case, 1-core and 4-core: code generation and execution
» RTEMS (mono-core + SMP): code generation and execution
» XtratuM (mono-core + SMP): configuration generation, compilation of XML

generated by XtratuM tools
• Note: support of a RTEMS BSP for XtratuM in PolyORB-HI/C could not be

tested, status unknown
» Log reports provided as reference output from XtratuM runs

> Addition of communication: target altitude configured from an external source:
delayed due to lack of SpaceWire in RTEMS/SMP
» Mitigation solution is to implement these outside of this study, in the scope of

PERASPERA once RTEMS 4.11 stabilizes

Implementation work

12/07/2016 TASTE Multicore -- ESA Final Days 38

1. Introduction

2. Project inputs

3. TASTE multi-core

4. Conclusion & perspectives

Outline

12/07/2016 TASTE Multicore -- ESA Final Days 39

> Study defined two case studies to evaluate support for SMP and TSP in TASTE
> Case studies helped to

» Derive requirements for TASTE-DV updates
• Ellidiss confident these could be implemented using the existing technology

» Consolidate support of SMP and TSP in TASTE-CV/AADL
• Front-end, property sets and backends prepared

– SMP for RTEMS and POSIX;TSP for Xtratum
– Code generation update for RTEMS and POSIX
– Generation of configuration for XtratuM

> All contributions will be integrated to TASTE VM

Conclusion

12/07/2016 TASTE Multicore -- ESA Final Days 40

