
Techne

Multi-threaded processor for 
space applications - (type B)

Techne Consulting Ltd.  Airbus 
Space & Defence SAS, daiteq s.r.o.



Techne

Presentatiion Structure

• Overview of the presentation:
– Why multi-threaded technology and in 

particular why Microthreading?
– History of Microthreading
– Benefits of the technology
– Implementation results
– The next steps



Techne

Microthreading

• The aim in this project is to provide 
flexibility in on-board processing

– On-board processing typically comprises a mix of 
programmable cores and dedicated logic

– Dedicated logic provides performance but at the cost of 
flexibility and high development costs

• Multi-core processors give performance
– But still have cost and flexibility issues i.e. in capturing 

concurrency (rewriting code) and scheduling it to the platform
– Microthreading captures concurrency just once in the ISA
– Performance depends on run-time allocation of resources, i.e. 

number of cores / threads without any further development



Techne

Origins of Microthreading

• The original concept of Microthreading dates 
back to the 1996
– It was proposed to advance microprocessor design

• Over the last decade two projects saw significant 
progress of this concept
– NWO Microgrids – funded the development of a 

cycle-accurate multi-core simulator
– EU AppleCORE funded the development of a basic 

infrastructure for further development of the concept
• languages, compilers, multi-core simulators, OS components 

and a single core FPGA prototype



Techne

Microthreading Concepts

• Microthreading extends a processor’s ISA to 
include instructions to capture and manage 
concurrency in a hierarchical manner

• That concurrency is based on families of 
identical threads, e.g. 
– A single thread family could be a task, a function an 

interrupt handler, etc. etc.
– A multiple thread family can represent the concurrent 

execution of a loop body, with its index range 
captured and managed in hardware



Techne

Benefits of Microthreading

• In terms of processor design
– Microthreaded concurrency can give a high level of 

latency tolerance on single cores
• Leading to high pipeline efficiencies and increased energy 

efficiency  e.g. values of 75-95% utilisation are typical

– Microthreaded concurrency can be distributed over an 
arbitrary number of cores (within constraints)

• A scalable multi-core leads to tuneable performance based 
only on the run-time allocation of resources (i.e.  cores and 
threads/core )



Techne

Innovation content

• We believe that this technology can impact on-
board processing in a number of ways
– High pipeline efficiency means energy-efficient computing
– Well designed multi-core processors can replace 

expensive and inflexible custom logic with scalable and 
flexible solutions

– Unlike standard multi-core processors, systems and 
applications software will not need costly redesign with 
each new generation of product

– It may be possible to integrate system control and payload 
processing on a common platform



Techne

Project goals

• The first task was to modify the ISA to optimise resource 
usage and clock frequency by offloading operations to 
software that would not materially impact performance

• This revised ISA was then implemented in FPGA
– The base architecture LEON2-FT core
– Innovation was separated between LEON2 specific solutions and 

generic solutions that would be portable to other ISA bases

• This work also required significant updating of the SL 
toolset, developed in AppleCORE 
– i.e. compilers, simulators and OS components



Techne

Project goals

• A key goal for this project was to evaluate 
microthreading based on real hardware using a 
real payload application

• In the second task therefore AirbusDS recoded 
the Euclide benchmark algorithm into the core 
Microthreading language SL 
– This was evaluated for difficulty e.g. man hours
– The resulting code was run and evaluated on the 

improved Microthreaded prototype



Techne

ISA redesign
• Major changes were made to the ISA were:

– Remove dependent families used in parallel 
reductions and offer alternative solution

• reduced concurrency management logic and simplified 
register addressing

– Restrict logical register partitioning (globals/locals)
• Number of globals was arbitrary now restricted to 0/4/8/16 

which optimised further speed of register file addressing

– Move resource allocation from hardware to software
• greatly simplifies concurrency management hardware

– Introduce blocking in index ranges
• increases hardware complexity marginally but we expect  to 

be able to eliminate known bottlenecks by software tuning



Techne

Prototype

• Overall block diagram of LEON2-MT
• As well as new components to manage the state and 

schedule threads, changes were also required to the 
Integer unit, I&Dcache and register file



Techne

Resources used

• Table shows the resources used for Leon2-MT compared to Leon2-
FT (same data store for both chips)

• For the larger board where utilisation is not an issue we achieve the 
same clock speed and use approximately 2X the resources



Techne

Results - Software

• The Euclid benchmark comprises ~1300 LOCs 
spread over 10 computation kernels and an 
input data generator.

• The programmer assigned the task had no 
experience of Microthreading, the SL language 
or the environment used prior to this project.



Techne

Results - Software

• Total effort in training for the parallelization in SL 
was 3 days on-site plus approximately one week 
of self-study

• The complete application was recoded and 
tested using the simulation environment

• Total effort in recoding the use-case algorithm 
including testing and debugging was ~3 man-
weeks spread over 6 calendar months



Techne

Results - Execution

• The results presented here were obtained by running 
compiled SL code on the prototype core instantiated on a 
Spartan 6 FPGA board and comprise test kernels, FFT and 
the Euclide application components
– For the small workloads (kernels ca1d and rgb2gray-int) there are very 

few instruction for every store
– For the larger workloads (rgb2gray-softfp and FFT) the computation to 

store ratio is larger much in the case of soft fp

• Memory is a potential bottleneck in this design and will need 
to be redesigned in any future project
– This is not noticed in LEON2-FT due to the much lower IPC
– However with expected pipeline efficiencies in LEON2-MT at 75-95, the 

store bandwidth e.g. one word every 3 cycles for stores and one line in 
17cycles for reads has the potential to limit performance



Techne

Results – ca1d kernel
Results show: execution time; execution efficiency 
(IPC) and speedup vs Sequential

The three cases show: sequential, parallel and 
parallel blocked, where index blocking is used to 
constrain locality

This kernel has few instructions in each thread, 
hence a high proportion of stores which as 
workload increases limit execution efficiency to 
memory bus speed (3 cycles per store)



Techne

Results – rgb2grey kernel

This kernel is also constrained by store pressure

In this kernel we look at the influence of allocation 
of hardware threads (1, 2, 4, 8, 16, …). There is 
little difference between 4, 8 and 16 threads

Note a phase change when performance 
becomes limited by stores at ~90 iterations

For 4+ threads we are getting speedups of ~6X 
before stores limit performance and ~2 in 
asymptote



Techne

Results – rgb2grey
softfp kernel

This kernel uses software floating point so f-p 
operations trap to software and hence increase 
the ratio of computation instructions to stores.

We see no deterioration of performance as 
workload increases as stores are more infrequent

Performance increases up to ~16 threads giving 
speedups of ~5X with pipeline efficiency of ~85%



Techne

Analysis

• Speedups for few iterations in the int kernels are enhanced because 
Microthreading reduces the overall workload (see above)

– index increment as well as loop bound checks are performed in hardware

• The subsequent drop in execution efficiency we believe is due to the 
effects of the store buffer bottleneck

• With more computation between stores, e.g. when using software 
floating point in rgb2grey the store buffer is not a bottleneck

• Here we see speedup increasing with number of threads up to 4.5X



Techne

Results – FFT
• FFT is a complex algorithm which has poor locality in Dcache in a 

number of its logn stages (access strides are 1, 2, 4, 8, etc.)
• we see execution efficiencies of 80-90% for 4 or more threads
• we see speedups of up to4X for 4 or more hardware thread as 

the FFT size increases
• N.b because of the log scale an FFT of 32 points, i.e. just 16 

software threads falls in the middle of the scale



Techne

Results – Euclide

• Due to a hardware bug it was not possible to run 
the complete application on the prototype core

• Various components of the application were 
executed successfully over a range of 
application and resource parameters
– However different components failed on different 

parameters precluding any parallel execution of the 
complete application



Techne

Results – Euclide

• The fragmented results are presented in 
the report in detail - here we focus on two 
components

• detectSaturation shown right, which 
exploits the new feature parallel supporting 
reductions

– It can be seen that even with relatively few 
threads we see speedups of 2 to 2.5 and 
efficiencies approaching 50%

• detectCosmicRays which is the main 
component of Euclide shown in the table 



Techne

Further developments

• Our results demonstrate the benefits of this technology 
– high pipeline efficency and speedup over the conventional core 

are due to being able to tolerating large latency operations
– flexibility in deployment - run code using 1-16 hardware threads 

on one core without any change to code or recompilation
– an implementation with a similar clock frequency compared to 

the Leon2 using ~ 2X resources (depending on configuration)
– Compared to the Apple-CORE prototype we see 15X in overall 

design efficiency using the measure - freq*IPC/resources

• However, this is still a single core and to demonstrate 
the full benefits of tuneable performance up to custom 
logic speed we need to implement a multi-core prototype



Techne

Further developments

• The tasks required in designing a multi-core are:
– specify the architecture and communication layers, 

i.e. distributed register file, cache hierarchy and cache 
coherence

– design the multi-core architecture
– verify the multi-core architecture
– evaluate the prototype and characterise performance 

against resources used
– investigate the use of mixed criticality applications on 

the same platform
• Cost around 250KEUR



Techne

Further developments

• Alternatively a more aggressive project could 
develop an ASIC multi-core implementation

• This would require the same design steps but in 
addition it would be prudent to also put more into 
software development

• Examples are to cross compile to SL from other 
more standard languages and/or intermediate 
languages, e.g. OpenCL or Single Assignment C 
(SaC)

• Project cost ≥1MEUR



Techne

Further developments

• This is foundation technology and if adopted has 
wide ranging use in space applications

• Anticipated spin offs include the use of the same 
technology in other compute intensive/energy 
restricted fields
– E.g. data-centres … but to compete with current 

processor technology either innovative solutions need 
to be adopted or a large investment made in a custom 
core implelemtation



Techne

Unused Slides



Techne

Benefits of Microthreading

• In terms of System design
– Code is redeveloped once only, compiled and then 

performance is tuned by parameterising the 
resources used to execute it

– Preceding Type A project investigated two levels of 
priority threads by simulation and it was found:

• a high priority thread gives extremely low latency and jitter 
even running heavy background computations

– e.g. 35-180µsec from interrupt for a 30µsec nominal task at 10MHz

• running high priority threads periodically did not significantly 
impact the background computational tasks



Techne

Project goals

• The AppleCORE project produced an FPGA 
prototype of a microthreaded core: UTLeon3 
based on the Leon3 core
– the overall relative design efficiency defined by:

• Pipeline-effiency*clock-speed/gates-used

– was ~0.14 for FPGA and ~0.18 for ASIC, hence 
UTLeon3 was 14-18% as efficient as the Leon3

• There were known inefficiencies in this design 
so the first task was to redesign the ISA to 
achieve a more efficient prototype 
implementation



Techne

Results - Software
• The computation kernels contain a mix of purely data-parallel operations with 

equal strides, data-parallel with mixed stride, and reductions.
• The access patterns, while relatively regular, put pressure on the cache 

memory system and suffer heavy miss rates in sequential execution.

LOOP groupNumber 
1         …. 

numberOfGroupsPerExposure

22 Janvier 2015 3

1. getCoAddedFrame

Frame[2048][2048]

2. detectSaturation(s)

saturationFrame[2048][2048/32]

saturationLimit[32] 3. subtractSuperBias(f) biasFrame[2048][2048]

4. nonLinearityCorrection(s) coeff [32][4]

5. subtractReferencePixelTopBottom(s)

Frame[2048][2048]

6. subtractReferencePixelSides(y)

7. detectCosmicRay(f)

offsetCosmicFrame [2048][2048]

sumXYFrame[2048][2048]
sumYFrame[2048][2048]

groupNumber
numberOfFramesAfterCosmicRay [2048][2048]

8. progressiveLinearLeastSquaresFit(f)groupNumber

9. calculateFinalSignalFrame(f)

sumYFrame [2048][2048]

numberOfGroupsPerExposure

0. initialiseData

Nframes
frameFromDetectorPhysically

Nframes
fitFiles


