
www.sener.es

ESTEC, 20th October 2016

SW autocoding for AOCS
10th ADCSS Workshop

J. Salvador Llorente, SENER Ingeniería y Sistemas, S.A.



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

1. Introduction 

2. START process: MINISAT and RTW 1.0

3. Getting Mature - Processes: 

1. Technology

2. Confidence Application

4. Application: SHARE Manual-Automatic

5. Maturity: EUCLID AOCS

6. AOCS SW Autocoding Results

1 Contents



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• AOCS Design ► Prototype ► Detail models► Debug & test models ► Models Ready ►

Decision for Manual(initiate the process) versus autocoding (press the button).

• Decision for AUTOCODING has implication early in the process:

– Design oriented towards autocoding SW. Hierarchy, Models definition, etc.

– Systematic & controlled process for prototyping, implementation, configuration, …

– Design and implementation to facilitate Verification, Maintainability and Usage

• Design and coding Rules/guidelines: early application for optimal tool usage

– AOCS SW to guarantee quality of produced code, complexity, readability, etc.

– Facilitate requirements traceability through design →implementation → verification

◦ ECSS satisfaction: ECSS-E-ST-40C/ ECSS-Q-ST-80C. 

• Those conditions imply an “initial” overhead, that will pay in return in later phases:

– Ensures efficient, robust and solid SW(e.g. no coding error) and AOCS subsystem.

– Provides a high level of flexibility and efficiency in changes and evolutions.

– Design team involvement and continuity in the SW development process.

– May simplify the SW development cycle and documentation, but room for 

improvement exist in this area.

1. Introduction: Autocoding for AOCS:



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• High level modelling languages helping design-analysis process (90´s).

• Each modelling language SW introduced its own code-generation (mainly two).

• INITIAL autocoding tools: Simple and Rigid, but Uncertain.

• Space Market needs Guarantees  Reluctance of application in High Class (A-B-C) SW. 

• However, it was applied in programs with 

– Hard constrains on schedule and budget

– Flexibility in project cycle and receptiveness to “controlled” risks

– Interest on innivations

• Autocoding has been introduced progressively in sequence:

1. Low-cost, Technology acquisition/demonstration, National(or amateur) programs.

◦ E.g.: MINISAT (see later)

2. Technology evolution and improvement

3. Application to “special” missions (technology, demonstration, academic…).

4. Maturity and incorporation of highly demanding missions and applications.

2. Starting process



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

2. Starting process: MINISAT

• SPANISH NATIONAL SPACE PROGRAM:

• Ideal candidate for autocoding since:

– Technology acquisition program

– Limited complexity

– Demanding Schedule and budget 

– SW development allowed deviation from strict Space SW Standards

• Start: 1994-Launch 1997. 14 months for ADCS design development and ADCS SW full 

functional validation, up to delivery for integration.

– ADCS Design, development and prototyping based on emerging commercial tool.

– Zero toolboxes available for guaranteeing SW results… (RTW version 1.0-1.1)

– Autocoding in one single block … 

◦ Modifications necessary in autocoded SW for memory management: 

incorporated in later versions of the autocoding tool

• Excellent results, no ACS failures in the mission, significant lifetime extension.

INTA mission (MOD)

• Initiated 1994 → Launched 1997

• 200kg, LEO, Sun-Pointing, Spin 

biased

• Primary Objective: Technology 

deployment-demonstration

• Secondary: Science



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

MATLAB ENVIRONMENT

STANDALONE

EXECUTABLE

Testing & Tuning
Algorithm and 

Software Design

Non Real-Time 

Flight Software 

Testing

Automatic Code 

Generation
OBASW source code

BRASSBOARD

TEST BENCH

ON-BOARD 

COMPUTER

SOFTWARE

TEST BENCH

On-Board 

Software 

Integration

Interface Testing
HW/SW 

Integration
System Testing

HW/SW 

Integration 

Testing

Final HW/SW 

Integration

OBASW

FCM

I/O Drivers



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• TECHNOLOGY ► Tools Evolution, Extensions, Integration with SW dev. tools, etc.

• AUTOCODING PROCESS ► process Investigation and Improvement (each company)

– GENERIC AOCS (GAOCS). Design to Autocoding preparation. Design Tools, 

Environment, Simulators, AOCS/GNC building blocks and Verification tools

– GENERIC AOCS Test Bench. Autocoding for the AOCS test benches (SIL+PIL+HIL). 

– ACODEG: Mechanization & cycle improvement for OBSW autocoding.

• Unconfident Customers ► deployment and demonstration

– Autocoding process application in Ground Systems(EGSEs):

◦ Classic OBSW for Herschel-Planck ACMS, but

‐ Design, Specification & validation symbiosis with GENERIC AOCS.

‐ AOCS-SCOE RTS (MOSAIC-EUROSIM).

◦ IXV: GNC design and SCOEs: As for H-P extensive use in D.E. and SCOE ( although 

more mature elements and tools, and different SCOE environment).

– Demonstration and application in more flexible/risky receptive missions:

◦ OPTOS ADCS, but also Eagle-Eye (Virtual SC AOCS), ASVIS, ...

◦ Technology demonstration missions (just in ESA): PROBA-1,2,3,V, SMART, …

3. Getting Mature: Technology evolution 



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• OPTOS. OPTOS is a picosatellite from INTA(Spanish MoD). Launch 2013:

– Cubesat: 

◦ University Standard ► Evolution to professional application

◦ (3xU) = 300x100x100 mm (~3 Kg). Mass = 3.5kg

◦ Distributed computer, CAN protocol, optical path for internal communications

• ADCS for OPTOS: major constrain was simple, short and low cost development: 

– Rapid Prototyping: Matlab/Simulink ®

– Use of in-house tool and blocks : GENERIC AOCS Library

– Simulink® implementation already provides:

◦ Architectural Design of ADCS SW

◦ Generation of ADCS SW Specification (Matlab Report Generator)

◦ ADCS Manager (by means of StateFlow ®)

◦ Generation of C-code by means of RT Embedded Coder® 

– Validation with maximization of Simulink based TB. Exercise in RT(TSIM) VCPs.

– Integration and test with the rest of SS at INTA EPH-EM (Open Loop). 

3. Getting Mature: OPTOS

12345 Mission /spacecraft dependent blocks

12345 ADCS software

12345 Generic blocks
OPTOS SIMULATOR

Visualization

Visualization

User Defined

S/C Kinematics

Terminator

Sensors  &

Onboard Clock

Spacecraft Dynamics

&

Environment

Open GUI

OB_SW_Calls

OB SW calls

OBDH

OB_Clock

Sensors

Actuators

T_OB_UTC

Sens

T_Ephem

Actuators _Status

SC_State

TTC

S/C Properties

& Internal

Perturbations

Initialise Model

Goto

Reality

Electronics 1

Electronics

Electronics

Actuators

ADCS

AOCS /GNC

<SC_Dynamics >

Clock

<mic>

to_TTC _OBDH

4

OB_DEt_Visual

3

MGT _comm

2

RW_comm

1

State_Machine

SC_State

TTC

Flags

ADCS _Mode_State

Navigation

T_OB_UTC

Sensors

T_Ephem

ADCS _State

Eclipse_Propagated

Orb_Prop_Qual_Flag

Att _det_qual_flag

MGM_Volt_Qual_Flag

Mag_Field_Bd

SC_Ang_Vel

Sun_Info

SC_Att _Q

Sun_Vers_ECI

SC_Vel_ECI

SC_Pos_ECI

Guidance

Mag_Field_Bd

Sun_Info

SC_Att _Q

Sun_Vers_ECI

SC_Vel_ECI

SC_Pos_ECI

ADCS_Mode_State

TTC

Pointing_Ref_Bd

H_Ref_Bd

RW _Ang_Vel_Ref

Yaw_Ref

Flag _Generator

RW _Tacho

SC_Ang_Vel

Sun_Info

ADCS _Mode_State

Sens

Eclipse_Prop

SC_Att _Q

Att _Det_Qual_Flag

ADCS _Mode

Sun_pZ

Sun_mZ

Sun_mY

RW _Saturated

W_Upper_Threshold

Rcfg _possible

Within_Bounds

Eclipse

Att _Det_Available

Init _End

mY_Fail_Precess_End

Precess_RWFail _End

FDIR_HW_Health _check

Act

Sens

mYSS _Fail

RW_Fail

mZSS_Fail

MGT_Fail

FDIR_Est_Qual _Thr _Flag

mYSS _Fail

RW_Fail

mZSS_Fail

MGT_Fail

ADCS_Mode_State

Orb_Prop_Qual_Flag

Att _Det_Qual_Flag

MGM_Volt_Qual_Flag

SC_Ang_Vel_Est

SC_Att _Q

Sun_Info

Pointing_Ref _Bd

Safe_Request

Control_Inhibit_Flag

Control

mZSS_Fail

Control_inhibit_flag

Mag_Field_Bd

SC_Ang_Vel_Est

Sun_info

H_ref _Bd

RW_Ang_Vel_Ref

Target_yaw_angle

ADCS_Mode_State

RW_Tacho

RW_comm

MGT_comm

Enable

OBDH_Data

1

<RW_Meas_Ang_Vel_(RW)>

<T_OB_UTC>

<Act >

Control_inhibit_flag

Sun_Info

Sun_Info

<Sens>

<SC_State>

<TTC>

<T_Ephem>

SC_Att _Q

Sun_Vers_ECI

SC_Vel_ECI

SC_Pos_ECI

Att _det_qual_flag

H_Ref _Bd

H_Ref_Bd

mZss_Fail

SC_Ang_Vel

RW_comm

MGT_comm

ADCS_Mode_State

Sun_pZ

Sun_mZ

Sun_mY

RW_Saturated

W_Upper_Threshold

Rcfg _possible

Within_Bounds

Eclipse

Att _Det_Available

Init_End

mYSS _Fail

RW_Fail

mY_Fail_Precess_End

Precess_RW_Fail_End

Safe_Request



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

Starter:

MINISAT

Tools:

+ACODEG 
+GATB + 
GENERIC 

AOCS

Confidence Projects:

ASVIS (prototype OBSW)

Herschel-
Planck(DE/SCOE)

SMART-OLEV(demo)

IXV(DE/SCOE)

Bridge 

OPTOS – OBSW

PROBA-3 
(System and 

Control)

Consolidated process: 

EUCLID AOCS

3. Getting Mature: some examples



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• Autocoding tools are NOT always the best for generation of SW. Depends on taste, but:

 + Good for Architecture Implementation, blocks interconnection, data flow, 

combination of information, data processing, etc

 ‒ Not so good for Operation Logic Implementation, Modes Management (exc. 

Dedicated tools), TM/TC handling. Delicate configuration control issue.

• Based on those considerations, combination of classical and model based autocoded SW 

is a frequent solution:

a) From only individual functions being autocoded, and integrated in a general manual 

SW which configures the modes.

b) To the fully autocoded SW to be integrated in a dedicated computer/processor-

board. 

c) Intermediate solutions are typically best, where some functionalities are 

implemented outside the autocoded SW, depending on convenience.

d) Also manual code (or script language) is frequently used embedded in the models, 

for functions for which classical SW flow is simpler, and easier not only for 

implementation, maintenance, verification, etc.

4. Application: SHARE Manual-Automatic



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

4. Application: SHARE Manual-Automatic

OBSW

HW 
units

CDMU
/Basic 

SW

AOCS ASW

Mode i 

hi

fi
gi

AOCS modes (Auto) 

Option B

f1 f2 …

g1 g2 …

h1 h2 …

AOCS Support 
(manual)

Option A

Mode 1

Mode 2

Mode 3

Autocoding

Autocoding opt

Manual coding

Mode Logic:
M1=M(f1, g2, h1)
M2 = N(f1, g3, h2

Modes Mng Modes Mng

…

Legend

General

FDIR

Survival

IFs, TM/TCs, 

MAN-AUTO share must allow 

clean interfaces and avoid 

deep interactions.



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• ESA Science Mission - Dark Universe.

• TASI as prime contractor

• SENER prime for AOCS, with ADSNL main partner

• Lissajous Orbit (L2). SOYUZ 2-1B (KOUROU)

• In-flight lifetime 6.25 years. 

• COMPLEX functions, performance & OPS:

‐ Unprecedented RPE

‐ Filter + GRISM Wheel disturbance compensation

‐ Slew + Dither manoeuvre for each observation

‐ RWL START-STOP

‐ FGS inside instrument focal plane

‐ MPS modulated in amplitude

‐ …

• Use of autocoded AOCS in ESA Science Mission

5. EUCLID AOCS



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• Dedicated organisation according to roles, shares, and processes:

– BSW(System/TASI), provides the HW interactions, final implementation of TMs, and 

reception/transmission of TCs, and in general the central SW services of the CDMU.

– AASW.

◦ MANUAL code to handle direct interactions with BSW, FDIR, Safe Mode, AUTO 

management,  Operations (TM/TCs), and implement modes activation.

‐ In charge of ADSNL (in general ADSNL manages the overall AOCS SW)

◦ AUTO implements all the AOCS modes, detailed algorithms, submodes and 

states, subset of FDIR functions(at the level of algorithms implementation), etc.

‐ In charge of SENER (includes autocoding implementation)

• Development in versions: v0 (Architecture + IF), v1 (Functions + performance), v2(FDIR)

• Integration flow: IFs definition and checks

– AUTO-MAN integration (in SDE under MAN company control).

– BSW-AASW integration (in SVF under BSW company control). 

• Development includes parallel versions and AUTO-MAN development (phasing issue).

• SW development based on general SW ECSS. Significant improvement might be obtained.

5. EUCLID: Dedicated share, process and organisation



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

5. EUCLID AOCS



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

AOCS

Design Environment

Models Design Impl. 

& Ref. Test

5. EUCLID: SW flow and versions

AASW

Reqs & 

Arch

MAN-AUTO 

Integration

C
D

R
 P

1

AASW 

RB

MAN D-I-UIT

AUTO UIT

AASW 

ST

OBSW 

Integr

P
D

R

S
R

R

P
D

R

Accept

tests

Eng. Simulation Environment 

(ESE/FES) (MIL-SIL) 3.1
S
R

R

MAN 

delta

C
D

R
 P

2

Integr&ST

1) AASW

2) OBSW

AR

SVF Software Validation Facility

(OBSW)

C
D

R

AUTO 

delta

AOCS 

Testing 

HILF AVM

EUCLID AOCS STATUS

• AOCS SRR and PDR closed. 

In progress for CDR.

• AOCS models ready in design environment. Reference tests available for the 

SW production and verification.

SW autocoding and UIT in progress

• Autocoding process already exercised for SAM and SCM

MAN-AUTO integration and Equivalence checks performed.

• Results according to expectations. 

CPU Budget verified by test in target processor.



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

• Autocoding was initially of difficult application (not intended) for critical SW (e.g. AOCS)

• Reliable processes obtained, by means of dedicated developments and efforts.

• Tools have evolved, extended and grown providing a set of (still incomplete) tools.

• Maturity obtained by different means/projects: suitable for application in critical and 

demanding AOCS OBSW. Advantages:

 + Direct involvement of design team in the SW production. 

 + minimisation of manual intervention and coding mistake

 + Agility in modifications, and iterations. Much shorter SW cycle & cost reduction.

 + Simplification in documentation and specification process may be exploited

 + Flexibility in the generation of SW test data and SW test cases

• Autocoding advantages require some challenges in processes, and alleviation in 

conventional SW habits (criticism on the advantages). To be improved:

? ‒ Early application of rules & processes to exploit the potential advantages. 

? ‒ Phasing adaptation: Intense initial effort in AOCS development (models and D.E.).

? ‒ SW docs simplification (specification, design description: models should replace it)

? ‒ ECSS adaptation to those autocoding conditions looks necessary (not just tailoring)

6. AOCS SW Autocoding Results



©SENER Ingeniería y Sistemas, S.A. – ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

The way to see the future

Thanks


