ESTEC, 20th October 2016

SW autocodi n for AOCS

10th ADCSS Workshop

- J. Salvador Llorente, SENER Ingenieria y Sistemas, S.A.
Www.sener.es

ADCSS 2016 ADCSS: Autocoding for AOCS

1 Contents

1. Introduction
2. START process: MINISAT and RTW 1.0
3. Getting Mature - Processes:

1. Technology

2. Confidence Application
4. Application: SHARE Manual-Automatic
5. Maturity: EUCLID AOCS
6. AOCS SW Autocoding Results

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 2 “‘

ADCSS 2016 ADCSS: Autocoding for AOCS

1. Introduction: Autocoding for AOCS:

Decision for AUTOCODING has implication early in the process:
— Design oriented towards autocoding SW. Hierarchy, Models definition, etc.
— Systematic & controlled process for prototyping, implementation, configuration, ...
— Design and implementation to facilitate Verification, Maintainability and Usage
Design and coding Rules/guidelines: early application for optimal tool usage
— AOCS SW to guarantee quality of produced code, complexity, readability, etc.
— Facilitate requirements traceability through design —implementation — verification
o ECSS satisfaction: ECSS-E-ST-40C/ ECSS-Q-ST-80C.
Those conditions imply an “initial” overhead, that will pay in return in later phases:
— Ensures efficient, robust and solid SW(e.g. no coding error) and AOCS subsystem.
— Provides a high level of flexibility and efficiency in changes and evolutions.
— Design team involvement and continuity in the SW development process.

— May simplify the SW development cycle and documentation, but room for
improvement exist in this area.

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 3

ADCSS 2016 ADCSS: Autocoding for AOCS

2. Starting process

« High level modelling languages helping design-analysis process (90 's).
« Each modelling language SW introduced its own code-generation (mainly two).
* INITIAL autocoding tools: Simple and Rigid, but Uncertain.
« Space Market needs Guarantees = Reluctance of application in High Class (A-B-C) SW.
« However, it was applied in programs with
— Hard constrains on schedule and budget
— Flexibility in project cycle and receptiveness to “controlled” risks
— Interest on innivations
» Autocoding has been introduced progressively in sequence:
1. Low-cost, Technology acquisition/demonstration, National(or amateur) programs.
o E.g.: MINISAT (see later)
2. Technology evolution and improvement
3. Application to “special” missions (technology, demonstration, academic...).
4. Maturity and incorporation of highly demanding missions and applications.

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 4

ADCSS 2016 ADCSS: Autocoding for AOCS

2. Starting process: MINISAT

INTA mission (MOD)
Initiated 1994 — Launched 1997

SPANISH NATIONAL SPACE PROGRAM: 200kg, LEO, Sun-Pointing, Spin

« |deal candidate for autocoding since: biased

— Technology acquisition program il gonieciie: Techl?ology
o , deployment-demonstration
— Limited complexity

Secondary: Science
— Demanding Schedule and budget
— SW development allowed deviation from strict Space SW Standards

« Start: 1994-Launch 1997. 14 months for ADCS design development and ADCS SW full
functional validation, up to delivery for integration.

— ADCS Design, development and prototyping based on emerging commercial tool.
— Zero toolboxes available for guaranteeing SW results... (RTW version 1.0-1.1)
— Autocoding in one single block ...

o Modifications necessary in autocoded SW for memory management:
incorporated in later versions of the autocoding tool

» Excellent results, no ACS failures in the mission, significant lifetime extension.

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 5

ADCSS 2016

ADCSS: Autocoding for AOCS

MathWorks Tools Cut Satellite
Software Development Time

In June 1994, the Instituto Nacional de Ténica
Acroespacial (INTA), Spain's equivalent of NASA,
CASA to design and manufacture the Minist-01
satellite. CASA subcontracted the development
of the attitude control system (ACS) to SENER
Ingenieria y Sisternas.
attitude of the satellite in orbit to maintain solar
power and telemetry control. The system also con-
trols the spin and rotation of the sateflite to accom-
modate three onboard low-earth orbit experiments.
SENER was able to complete the ACS within
a very tight schedule and budget by using MATLAB®,
Simulink®, and Real-Time Workshop® “We firmly
believe that this is the approach to be followed in

UusER®R

STORY

The SENER team quickly realizsd how re:
the 14-month deadline was; if they follo
normal proced: writing the real-ti
would take more than 2 year.

To produce the ACS systemn on sched|
and within budget, SENER would need to|

I-time Bight code by with d

“We had been using MATLAB for other thil

g the attitude control system

the future for cost-effective development of real-
time control systems,” says SENER ACS Technical
Manager, Jose Ramon Villa.

The Challenge

The ACS software had 1o be less than 100 KB in size,
and it had to be written, tested, and integrated with
other systems on a single, shared, onboard, 16-Mhz
Intel 386 processor within 14 months on 2 budget
of only $1.3 million for the whale ACS system.

The Challenge
To develop the attitude

control system for Minisat-01

the first satellite to be

completely built in Spain

The Solution

| Use MATLAB®, Simulink®
and Real-Time Workshop®
to develop, test, and auto-

matically generate code for

B The Results

| Accelerated simulation

Substantial time and

| cost savings

Problem-free performance,
helping to extend the satel-

lite’s mission life

“We faced the challenge not only of developing the software for the attitude control
system for Minisat-01 in less than one year, but also of completing exhaustive tests
before the integration of the software with the other satellite systems, all within 14
months. It would not have been possible to develop, produce, and test the software

within that time frame without MathWorks tools.”

Jose Ramon Villa, Divisién Aeroespocic

SENER Ingenieria y Sisternas, S.A

components were entirely hand-coded, while two are
full Sirmulink st The

the steflite’s projected two-year mission life.
The Minisat-01 was bunched in April 1997
using the aitborae Peganss laumchor from Ovbital
Sciences Corporation. Since then, its ACS has
S sl

P ystemn and some
handwritten code. In all, the OBASW uses up to
seven Simulink subsystem levels, over 13,000 Sirmulink
blocks, 11 hand-coded S-function blocks imported
imto Simudink diagrams with 6,000 lines of handwritten The Results
C e, and 25,000 fines of scally ger daode « L d ! Using link and

To comply with the size Emitation of the ACS Real-Time Workshop, SENER engineers built a
software, the SENER team developed a C utility that simalator that ran more than 20 times fster than
automatically rolled lines of Real- Time Workshop real time. This enabled them to simulate almost
generated code into C loops, a feature included a full year in orbit—half the satellite’s mission—

before it was hunched.

in later versions of the product. From this C source
code the team produced an executable that reduced + Substantial time and cost savings. It took just over
the size of the final OBASW to a Ettle over 100 KB. a year to design the ACS algorithms and develop

Once the OBASW was written, it had to be test- and test the software for integration with other
«ed before being loaded onto the onboard comp board soft systemns. “Using MathWorks tools
The intensive software testing had 10 be done quickly, sh d the develop cycle, accel d testing
but it had to include simulating the behavior of the and required fewer people to document algorithms
satellite through three months of continuous mtellite and write code,” says Villa.
mission time. Problem- free performance, helping to extend the

The schedule did not allow for three months satellite’s mission life. The OBASW has performed
of testing. However, because the original attitude fawlessly foll the normal adj that
determination and coatrol algorithms and logic were made after it was put into orbit. The satellite
had been developed in the MATLAB and Simulink passed its original mission life of two years and was
environment, the limited testing time was not still operating correctly three years after its hunch.
2 problem for the team: they could use that same
environment to accelerate testing.

First, the SENER engineers used Simulink and
Real-Time Workshop to create a dymamic simulator
that would test the code against an internal dock

accelerated o cycle more than 20 times faster than
o 506-647-7000 diades imcdudi

To find out more:
www. mothworks.com

WWw.sener.es
T

Fox SOB-647-701 real time. The diffe OBASW
ot rhTnatmoi on those handwritten in C, were i din link
W e o

as a fully coded Simulink model. Using this approach,
the team extended testing for 8,000 hours, or half of

98400

©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016

w5 SENER|

ADCSS 2016 ADCSS: Autocoding for AOCS

3. Getting Mature: Technology evolution

« TECHNOLOGY » Tools Evolution, Extensions, Integration with SW dev. tools, etc.
« AUTOCODING PROCESS » process Investigation and Improvement (each company)

— GENERIC AOCS (GAOCS). Design to Autocoding preparation. Design Tools,
Environment, Simulators, AOCS/GNC building blocks and Verification tools

— GENERIC AOCS Test Bench. Autocoding for the AOCS test benches (SIL+PIL+HIL).
— ACODEG: Mechanization & cycle improvement for OBSW autocoding.
* Unconfident Customers » deployment and demonstration
— Autocoding process application in Ground Systems(EGSEs):
o Classic OBSW for Herschel-Planck ACMS, but
- Design, Specification & validation symbiosis with GENERIC AOCS.
- AOCS-SCOE RTS (MOSAIC-EUROSIM).

o |XV: GNC design and SCOEs: As for H-P extensive use in D.E. and SCOE (although
more mature elements and tools, and different SCOE environment).

— Demonstration and application in more flexible/risky receptive missions:
o OPTOS ADCS, but also Eagle-Eye (Virtual SC AOCS), ASVIS, ...
o Technology demonstration missions (just in ESA): PROBA-1,2,3,V, SMART, ...

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 7

ADCSS 2016

ADCSS: Autocoding for AOCS

3. Getting Mature: OPTOS

« OPT(

SC_Pos_ECL

Mode == 2 & IHW

Unhealthy]

e
N Ve Fa
> AW_F
Enable RW_Fal
mass
> P e
.
FDIR_HW_Health _check
A D C .
» 108Ut
et
P sensors
— <T_OB_{TC> P T_Ephem
t— ADCS _state
<sens>
1 PH <7 Ephem>
0BOH_pata
So_smp| 05
e AoCs_ode_Siate | —}
| Fiags
State_Machine:
—_ e
W e g Ve (R

©OSENER Ingenie!

L]
L]
Nominal T .
- I1SC_Modka == 1| S5, Modke == 2| SC_Modk
N \
\ \
1 &
3| SC_Mode == 4) & |HW_Unhealthy]
Observation
Safe . L e
S . ‘
.. [SC_Mode == §
[(SC_Mode == 1| SC_Mode == 2| SG_Made == 3| SC_Moda == 4) & HW_Unhealtry] ‘l
17[SC_Maode == 5 & GS,_Healthy]
Electronics 1
Degraded
[(SC_Mode == 1| SC_Mode == 2| SC_Mode == 3| SC_Mode == 4) & GS_Heslty]
Electronics il
wag_rieio_o w1 _comm »
oo Pointing Ref_Bd CSIGNC
Control
sc o 3 —» Actuators
HRef_Bd i —
Sun_vers_ECi e 20CS Tefminator
SC_Vel ECI
RW_ng_vel_Ref
Sc_pos_ECI
P A0CS_ode_State
Vau,_Ret
e
—»>
»
»
»
Visualization
R e Y

0B_DE_Visual

ADCSS 2016 ADCSS: Autocoding for AOCS

Starter:

MINISAT

©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 9

ADCSS 2016 ADCSS: Autocoding for AOCS

4. Application: SHARE Manual-Automatic

» Autocoding tools are NOT always the best for generation of SW. Depends on taste, but:

» + Good for Architecture Implementation, blocks interconnection, data flow,
combination of information, data processing, etc

» — Not so good for Operation Logic Implementation, Modes Management (exc.
Dedicated tools), TM/TC handling. Delicate configuration control issue.

« Based on those considerations, combination of classical and model based autocoded SW
is a frequent solution:

a) From only individual functions being autocoded, and integrated in a general manual
SW which configures the modes.

b) To the fully autocoded SW to be integrated in a dedicated computer/processor-
board.

c) Intermediate solutions are typically best, where some functionalities are
implemented outside the autocoded SW, depending on convenience.

d) Also manual code (or script language) is frequently used embedded in the models,
for functions for which classical SW flow is simpler, and easier not only for
implementation, maintenance, verification, etc.

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 10

ADCSS 2016

ADCSS: Autocoding for AOCS

4. Application: SHARE Manual-Automatic

OBSW

AOCS

AOQOCS Support
(manual)

Option A

Mode 1
Mode 2
Mode 3

ASW
AOCS modes (Auto)

Option B
.|

Mode Logic:
M1=M(f1, g2, h1)
M2 = N(f1, g3, h2

Modes Mng

MAN-AUTO share must allow
clean interfaces and avoid
deep interactions.

11

©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016

Legend Autocoding opt
Manual coding

SSSENER

ADCSS 2016 ADCSS: Autocoding for AOCS

5. EUCLID AOCS

Nominal Modes

A
_______ CFI' CDMS
2x Reaction Control I

|
|
[.)
Fine Sun Sensor PS [ubsystem I
| |
o ' Micro Propulsion g
! Subsystem !
RCS-A | SAS-A | IMU 2% | |
Sun Acquisition : Fine Guidance L]
Sensor e Y i Sensor : CDMU
(B s J
\
2x [1/0
Coarse Rate Sensor @
S (3 axis) E3e RS-422
RCS-A 5TR-1,2 RWL (RCS) MPS FGS
Accell MU STR-1,2 IMU 5TR-1,2 IMU 28V DC
3x AOCS SW
Star Tracker o— MIL-BUS-1553
1
4x
: SpW
Reaction Wheels o— @
PCDU MU
Tx T™/TC /
Gyroscope (4 axis) o—

Accelerometers (4 axis) m—‘
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 12 ws| SENER

ADCSS 2016 ADCSS: Autocoding for AOCS

5. EUCLID: Dedicated share, process and organisation

» Dedicated organisation according to roles, shares, and processes:

— BSW(System/TASI), provides the HW interactions, final implementation of TMs, and
reception/transmission of TCs, and in general the central SW services of the CDMU.

— AASW.

o MANUAL code to handle direct interactions with BSW, FDIR, Safe Mode, AUTO
management, Operations (TM/TCs), and implement modes activation.

- In charge of ADSNL (in general ADSNL manages the overall AOCS SW)

o AUTO implements all the AOCS modes, detailed algorithms, submodes and
states, subset of FDIR functions(at the level of algorithms implementation), etc.

- In charge of SENER (includes autocoding implementation)
« Development in versions: vO (Architecture + IF), v1 (Functions + performance), v2(FDIR)
* Integration flow: IFs definition and checks
— AUTO-MAN integration (in SDE under MAN company control).
— BSW-AASW integration (in SVF under BSW company control).
» Development includes parallel versions and AUTO-MAN development (phasing issue).
» SW development based on general SW ECSS. Significant improvement might be obtained.

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 13

ycoding for AOCS

m

i

: m

EE

m

—
B S

IARE)
Eggggg

e

14

- —] ri
A f = i
-\--..j i
= ‘:::: f
= i
B et |

B

5. EUC

©SENER Ingenieria y Si

ADCSS 2016

ADCSS 2016 ADCSS: Autocoding for AOCS

5. EUCLID: SW flow and versions

EUCLID AOCS STATUS
AOCS SRR and PDR closed.

In progress for CDR.

AOCS models ready in design environment. Reference tests available for the
SW production and verification.

SW autocoding and UIT in progress

Autocoding process already exercised for SAM and SCM

MAN-AUTO integration and Equivalence checks performed.

Results according to expectations.

CPU Budget verified by test in target processor.

©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016

ADCSS 2016 ADCSS: Autocoding for AOCS

6. AOCS SW Autocoding Results

« Autocoding was initially of difficult application (not intended) for critical SW (e.g. AOCS)
» Reliable processes obtained, by means of dedicated developments and efforts.
» Tools have evolved, extended and grown providing a set of (still incomplete) tools.

* Maturity obtained by different means/projects: suitable for application in critical and
demanding AOCS OBSW. Advantages:

v' + Direct involvement of design team in the SW production.

v' + minimisation of manual intervention and coding mistake

v+ Agility in modifications, and iterations. Much shorter SW cycle & cost reduction.
v' + Simplification in documentation and specification process may be exploited
v+ Flexibility in the generation of SW test data and SW test cases

» Autocoding advantages require some challenges in processes, and alleviation in
conventional SW habits (criticism on the advantages). To be improved:

? — Early application of rules & processes to exploit the potential advantages.

? —Phasing adaptation: Intense initial effort in AOCS development (models and D.E.).
? —SW docs simplification (specification, design description: models should replace it)
? — ECSS adaptation to those autocoding conditions looks necessary (not just tailoring)

+®
©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 16

ADCSS 2016 ADCSS: Autocoding for AOCS

+®

]

The way to see the future

Thanks

©SENER Ingenieria y Sistemas, S.A. - ESTEC, 20/10/2016 17

