

European Space Technology Harmonisation

ADCSS 2016

E. Williams, M. Freire

Technology Harmonisation Team Technology Planning Section (TEC-TP) Directorate of Technical and Quality Management

european space technology harmonisation

Purpose of ESA

"To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications."

Article 2 of ESA Convention

ADCSS 2016 | Slide 2

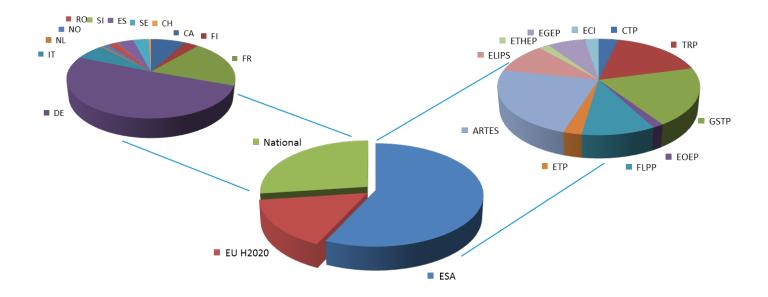
European Space Agency

ESA UNCLASSIFIED – For Official Use

Pace Agency

Objectives of Space Technology

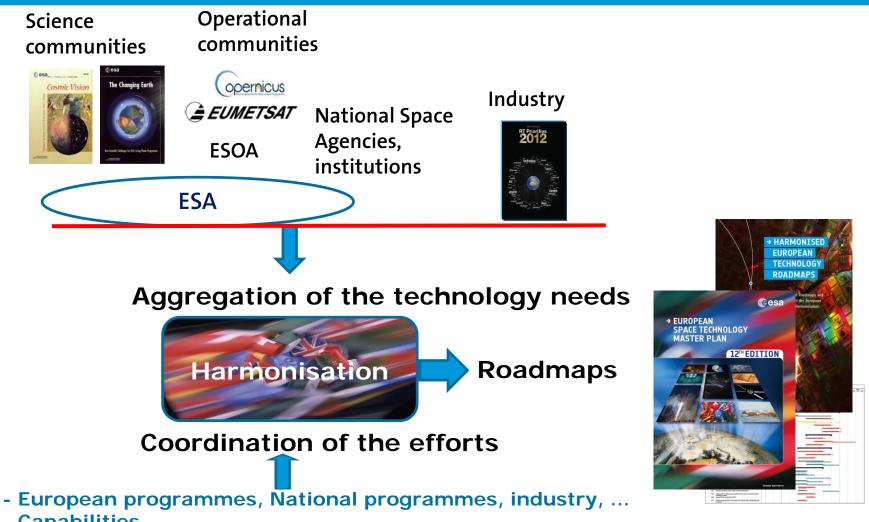
- Enabling the future science and service driven missions, launchers and infrastructure
- 2. Strengthening the competitiveness of European industry
- 3. Fostering innovation and technical excellence
- 4. Assuring non-dependence on critical space technologies



 Transferring technology from space to non-space applications ('spinoff'), and bringing innovations from outside the space sector to use in the design of new space systems ('spin-in')

ADCSS 2016 | Slide 3

Space Technology Budget in Europe



European Space Institutional Technology R&D average yearly budget of over **680M€** (figures from **ESTMP 2016 edition**)

~ 390 M€ ESA funding/year in ESA technology development lines help prepare over 4B€ of investments in missions / launchers / space infrastructures developments and for European industry's competitiveness

From Needs to Roadmaps

- Capabilities

ADCSS 2016 | Slide 5

Variety of Technology Coordination initiatives in Europe – some examples

pace technology

harmonisation

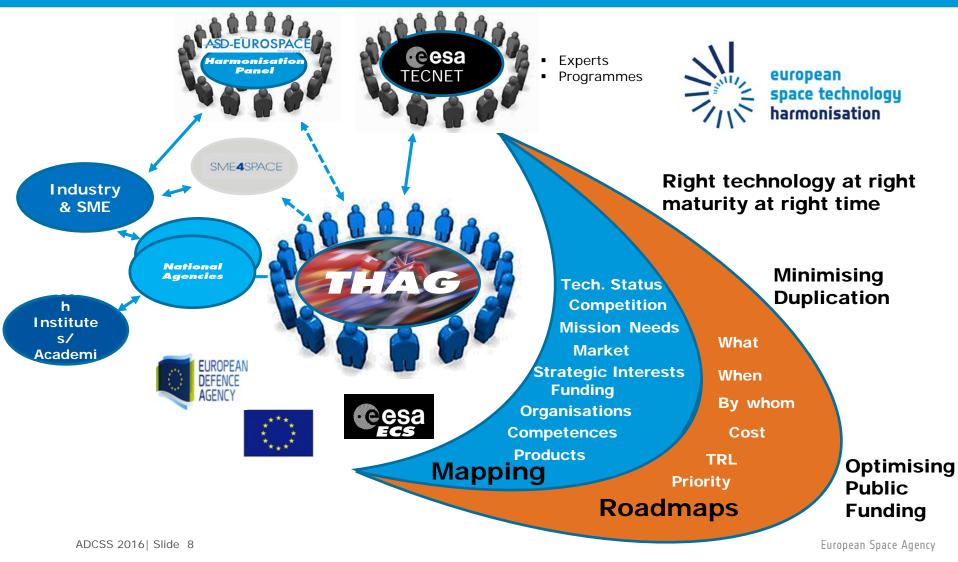
- Roadmaps across European Programmes for broad set of Technologies
 - **European Space Technology Harmonisation**
- Roadmaps for specific areas across European Programmes
 - European Space Components Coordination (complementary with harmonisation)
 - SAVOIR (input to Harmonisation) SAVOIR
- ESA Service Domain Specific / Programme Specific Technology Roadmaps
 - ESA Science (consistent with harmonisation), EGEP, ...
 - ESA roadmaps for Exploration (consistent with harmonisation)
 - H2020 specific SRC PSA projects on H2020 roadmaps
- Other ESA thematic / ESA Cross-cutting initiatives
 - **EC-ESA-EDA Non-Dependence Action Lists**
 - Future Instrument Technologies (roadmaps through harmonisation)
 - CleanSpace (consistent with harmonisation)
 - Space and Energy (consistent with harmonisation)
- National Agency Technology Roadmaps (input harmonisation via THAG)
- Industry prepared Roadmaps / R&T priorities across Europe
 - Eurospace R&T priorities reflected in input to Harmonisation via Eurospace

ADCSS 2016 | Slide 6

esa

Harmonisation Objectives – since 2001

- "Fill strategic gaps" and "Minimise <u>unnecessary</u> duplications"
- Consolidate European Strategic capabilities
- Achieve a coordinated and committed European Space Technology Policy and Planning
- Contribute to ensuring continuity and coherence between Technology and Industrial Policies


European Space Agency

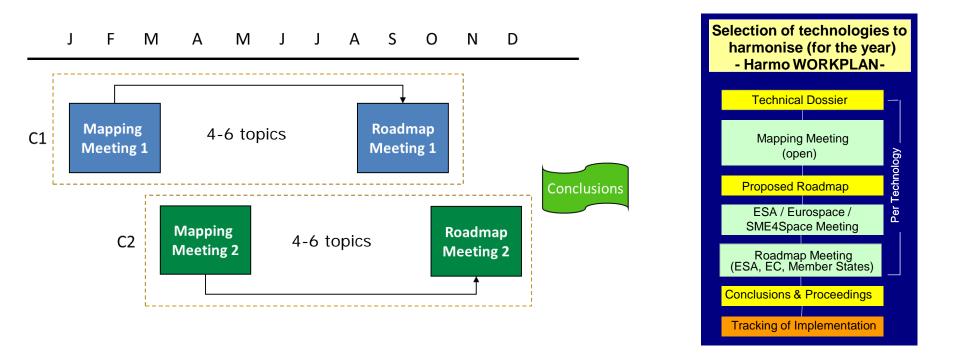
ADCSS 2016 | Slide 7

ESA UNCLASSIFIED – For Official Use

Broad Participation

ESA UNCLASSIFIED - For Official Use

Over 50 Harmonised Technology areas



- ✓ Automation and Robotics
- ✓Cryogenics and Focal Plane Cooling
- ✓SAR
- ✓On Board Radio Navigation Receivers
- ✓Thermal SW tools & Space Environment SW I/F
- ✓Aerothermodynamics tools
- Electro-Chemical Energy Storage (Batteries + Fuel Cells)
- ✓Microelectronics ASIC/FPGA
- Chemical propulsion (Components, Micropropulsion)
- ✓Green Propulsion
- Electrical Motors
- ✓ Ground Systems SW (+ functional verification)
- ✓ Data Systems and On-Board Computers
- ✓On Board Payload data processing
- ✓On Board Software
- ✓TT&C Transponders and Payload Data Transmitters
- Pyrotechnic Devices
- ✓Two Phase Heat Transport Systems
- ✓Power Management and Distribution
- ✓Inflatable and Deployable structures
- ✓ Solar Array Drive Mechanisms
- ✓Upper stage propulsion
- Avionics Embedded Systems
- ✓Optical Communication for space
- System Data Repository
 ADCSS 2016 | Slide 9
 - ESA UNCLASSIFIED For Official Use

- ✓Microwave Power Breakdown Modelling and Characterisation
- ✓Antenna Reflectors for Telecom
- ✓ Technologies for Hold-down, Release and Separation Systems
- ✓Critical Active RF Technologies
- ✓ Electric Propulsion Technologies
- ✓ Electric Propulsion Pointing Mechanisms
- ✓ Solar Cells and Solar Generators
- ✓ AOCS Sensors and Actuators
- ✓High Pressure Tanks and Vessels
- ✓Composite Materials
- ✓ Space Radiation Environment Models and In-orbit Monitors
- ✓Radiation Test Facilities and Engineering Tools
- ✓Array Antennas
- ✓Lidar Critical Subsystems
- Frequency & Time Generation and Distribution Space
- ✓Frequency & Time Generation and Distribution Ground
- ✓ Technologies for Optical Remote Passive Instruments Detectors
- ✓Technologies for Optical Remote Passive Instruments Structures, Mirrors
- ✓Technologies for Passive mm and sub-mm Wave Instruments
- ✓ System Modelling and Simulation Tools
- ✓ Technologies for Formation Flying Metrology
- ✓Position Sensors
- ✓Micro-Nano Technologies
- ✓Additive Manufacturing
- ✓Multi-body Dynamic Simulation
- ✓ Ground Station Technology

How it works

ADCSS 2016 |Slide 11

Output of Technology Harmonisation (1/2) Cesa

Per Technology addressed:

Mapping of the situation inside and outside Europe, including identification of critical issues. Technical Dossiers provide a complete overview on technology addressed.

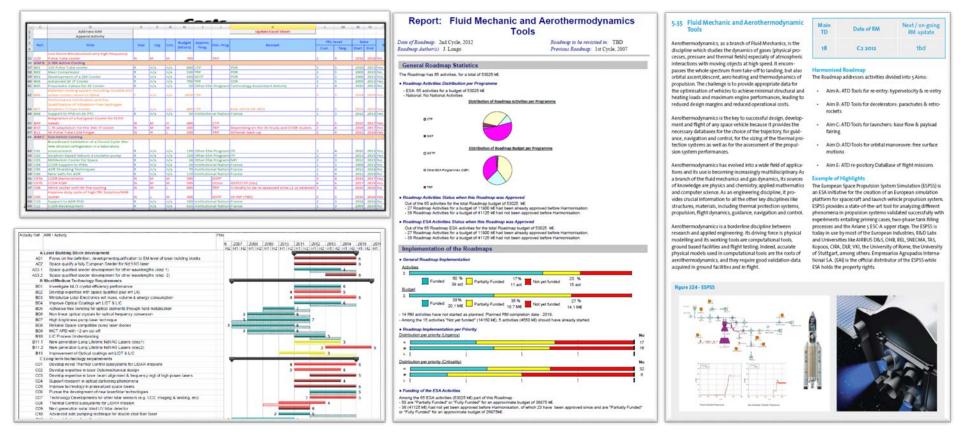
	-										
Product Name	Space Unit (SU) Name	Country	GPT System	GPT Product (Equipment, BB, C&P)	GPT Product Description	SU Role in the Supply Chain	Current TRL	Name (Unit)	Value	Name (Unit)	Value
IPPAAL	Aalborg University	Denmark	I-E On-board SW	I-E-4 Other	1.5.4.4 -			Function	Formal Methods	Portability	
			I-E On-board						WCET		
IT WORT	Absint	Germany	SW	I-E-4 Other	II-E-4-a -			Function	analysis	Portability	LEON
INAT-PRO	AdaCore	France	E-E On-board SW	I-E-2 Libraries	II-E-2-a Packet Utilization Standard			Function	ADA Cross compiler	Portability	ERC-32, LEON-II
lava development nethods and tools - lava Processor	AED	France	I-E On-board SW	I-E-4 Other	1640-	Research and Testing	3	Function		Portability	Java Processor
acc.	Aeroflex Gaisler	Sweden	I-E On-board SW	I-E-1 Operating Systems	1-5-1-4-			Function		Portability	ERC-32, LEON-II, LEON-III, LEON-III
Cos	Aeroflex Gaisler	Sweden	I-E On-board	I-E-1 Operating Systems	1-6-1-4 -			Function		Portability	ERC-32, LEON-II, LEON-III, LEON-III (MMU)
3004128442	Aeroflex Gaisler	Sweden	I-E On-board	8-E-2 Libraries	II-E-2-a Packet Utilization Standard			Function	Cross compilers CIC++	Portability	ERC-32, LEON-II, LEON-III
.inux	Aeroflex Gaisler	Sweden	I-E On-board SW	E-E-1 Operating Systems	1614-			Function		Portability	ERC-32, LEON-II, LEON-III, LEON-III (MMU)
LynxOS	Aeroflex Gaisler	Sweden	II-E On-board SW	I-E-1 Operating Bystems	11-E-1-a -			Function		Portability	ERC-32, LEON-II, LEON-II, LEON-II (MMU)
Success	Acreflex Gaisler	Sweden	I-E On-board RW	I-E-1 Operating Systems	1-5-1-e -			Function		Portability	ERC-32, LEON-II, LEON-III, LEON-III (MMU)

TABLE OF CONT
EXECUTIVE SUMMARY
INTRODUCTION
Document evolution
Acronym list
HARMONISATION PROCESS AND THAG.

Cesa

	TECHNOLOGY STATUS OVERVIEW	
	Technology description	
	Areas Covered by this Technical Dossier	
	Technology mapping overview	
3.1.1	Rationale for Harmonisation of the Technology	
3.1.2	Technology State of the Art in Europe	
3.1.3	Competitiveness and Benchmarking	
3.2	Ontologies	
3.2.1	Technology Status Overview	
3.2.2	Rationale for Harmonisation of the Technology	
3.2.3	Technology State of the Art in Europe	
3.2.4	Competitiveness and Benchmarking	
3.2.5	Technology Trend and Spin-In	
3.3	Formal methods	
3.3.1	Technology Status Overview	
3.3.2	Rationale for Harmonisation of the Technology	
3.3.3	Technology State of the Art in Europe	
3.3.4	Competitiveness and Benchmarking	
3.3.5	Technology Trend and Spin-In	
3.4	Software System Dependability for Software Engineering	
3.4.1	Technology Status Overview	
3.4.2	Rationale for Harmonisation of the Technology	
3.4.3	Technology State of the Art in Europe	
3.4.4	Competitiveness and Benchmarking	
3.4.5	Technology Trend and Spin-In	

ONTENTS

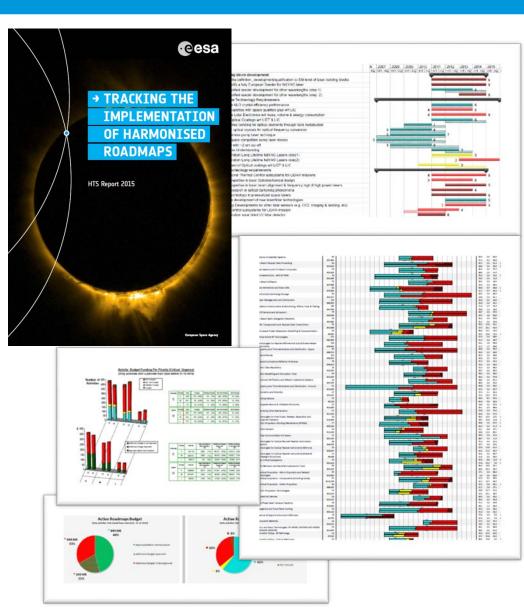


On-Board Software TD 4.2Draft (2.06) doc

Output of Technology Harmonisation (2/2) CSA

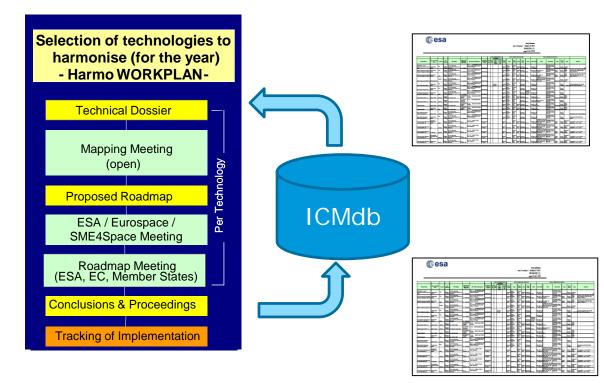
Per Technology addressed:

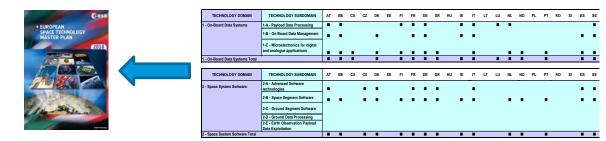
- Technology Roadmaps agreed at European Level with ESA, National Delegations and Industry. Note: Roadmaps are recommendations for decision makers and not IPC Workplans / Procurement plans.
- Recommendations agreed with ESA, National Delegations and Industry


Follow-up / TRACKING Implementation CSA

- Yearly Monitoring and Reporting on the implementation of the agreed Harmonised Roadmaps in ESA and Member State technology programmes
- Data collected from ESA experts and THAG
- Aggregated statistic and Key Performance Indicator (KPI) for ESA Council
- Individual reports for each Harmonised Roadmap

ADCSS 2016 |Slide 13

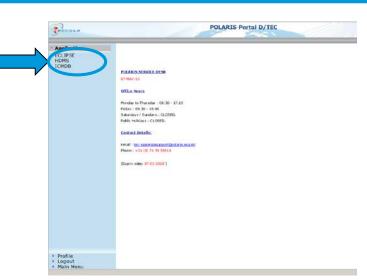

ESA UNCLASSIFIED - For Official Use

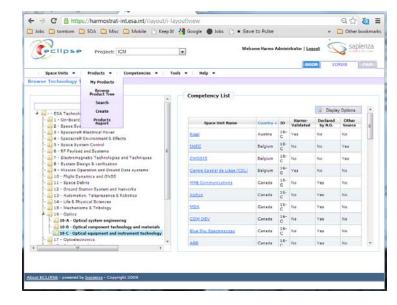


Industry Capability Mapping (ICM) db

- Through the harmonisation process, information on products and competences of Space Units is reviewed, updated and validated
- Tables of the Technical Dossier concerning European State of the Art are generated by the ICMdb at the beginning of a harmonisation cycle
- The tables are updated through the harmonisation and reintroduced in the database at the end of a harmonisation cycle
- Competence tables generated for ESTMP

ADCSS 2016 | Slide 14 ESA UNCLASSIFIED – For Official Use





ICM Database + HDMS Access

- All Harmonisation documents (TDs, RM, etc) available in the HDMS (Harmonisation Data Management System))
- Both the ICM DB and the HDMS are accessible online through https://harmostrat.esa.int
- Access is available upon request for all European Space Community representatives, ESA Community and THAG Delegates.
- Industry is encouraged to review the ICMdb and suggest updates through the Harmonisation process (via Eurospace, SME4Space and ESA Delegations) or directly to ESA

ESA UNCLASSIFIED – For Official Use

European Space Technology Master Plan - ESTMP

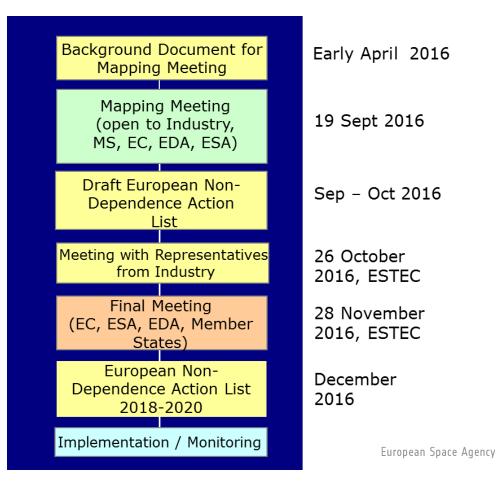
- Since its first publication over 10 years ago, the ESTMP is now a well established document and a true Master Plan for Space Technology development in Europe
- Includes information from ESA, its Member States and European Cooperating States, EC, EDA and other European technology stakeholders
- Provides visibility on the agreed European Roadmaps, their status and the European technology plans that implement them
- It is a shared instrument, resulting from cooperation amongst ESA, its Member States and other European stakeholders
- 2016 edition to be published in November
- Electronic version of the ESTMP can be requested by sending and e-mail to *estmp@esa.int* ADCSS 2016| Slide 16

ESA UNCLASSIFIED – For Official Use

SPACE TECHNOLOGY MASTER PLAN

12TH EDITION

Critical Space Technologies for European Strategic Non-Dependence - 2016



- The Commission-ESA-EDA Joint Task Force (JTF) is running the
 - European Non-dependence process in 2016 with European stakeholders
- The objective is to agree on an updated list of Actions for
 2018-2020 timeframe, to be
 used as an input for the
 preparation of institutional
 programmes addressing
 technology non-dependence

ADCSS 2016 | Slide 17

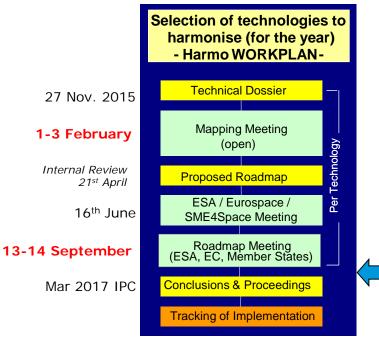
ESA UNCLASSIFIED – For Official Use

1st Cycle 2016 – Harmonisation of Avionics

Harmonisation Topic

Avionic Embedded Systems

Data Systems and On-Board Computers


On-Board Payload Data Processing

Microelectronics: ASIC and FPGA

- Mapping meetings (1-3 February)
 - > 80 participants from 16 countries, European Commission
 - Coordination with CTB
- Roadmap meetings (13-14 September)

> 4 Roadmaps discussed. Final documentation being prepared

ADCSS 2016 | Slide 18

Conclusions

- There is an acknowledged need to coordinate, harmonise and share information to ensure complementarity, promote synergies and avoid unnecessary duplication
- The European Space Technology Harmonisation is an established process, mapping the situation and establishing Harmonised Roadmaps with European stakeholders across the various European Programmes for a broad set of Technologies
- Success of the Harmonisation process depends on an active participation of all stakeholders and your continued support

ADCSS 2016 | Slide 19

THANK YOU

harmo@esa.int