EUROPEAN SPACE TECHNOLOGY HARMONISATION ROADMAP MEETING

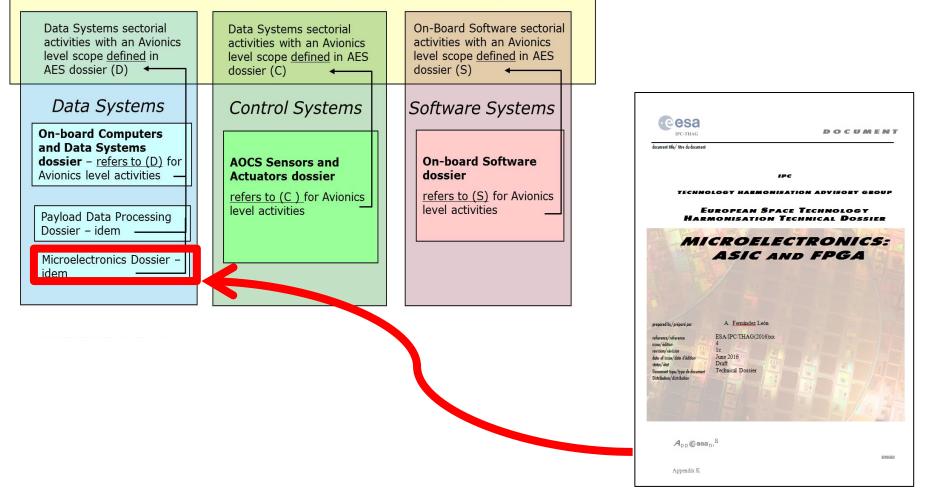
Industrial Policy Committee

Technology Harmonisation Advisory Group

MICROELECTRONICS: ASIC AND FPGA

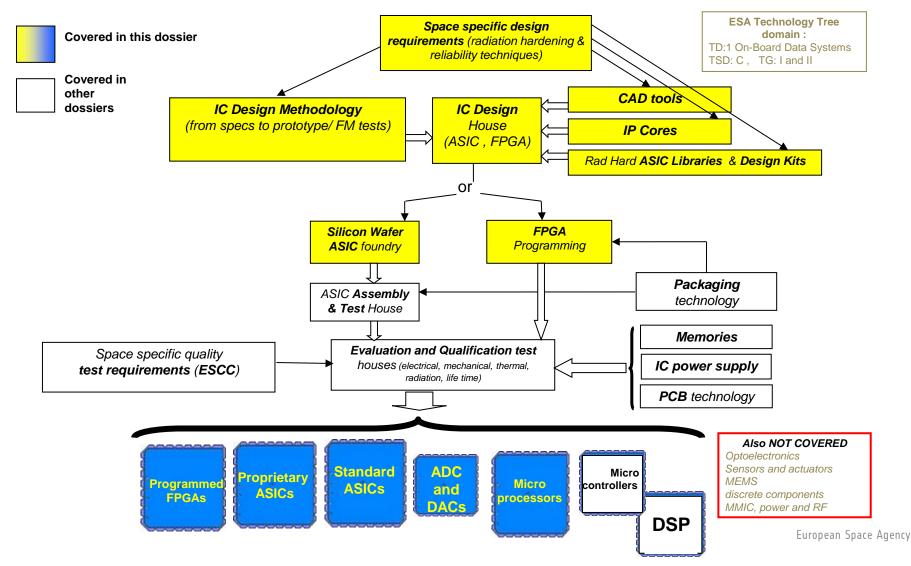
Issue 4 rev. 2Draft

A. Fernandez-Leon, TEC-EDM



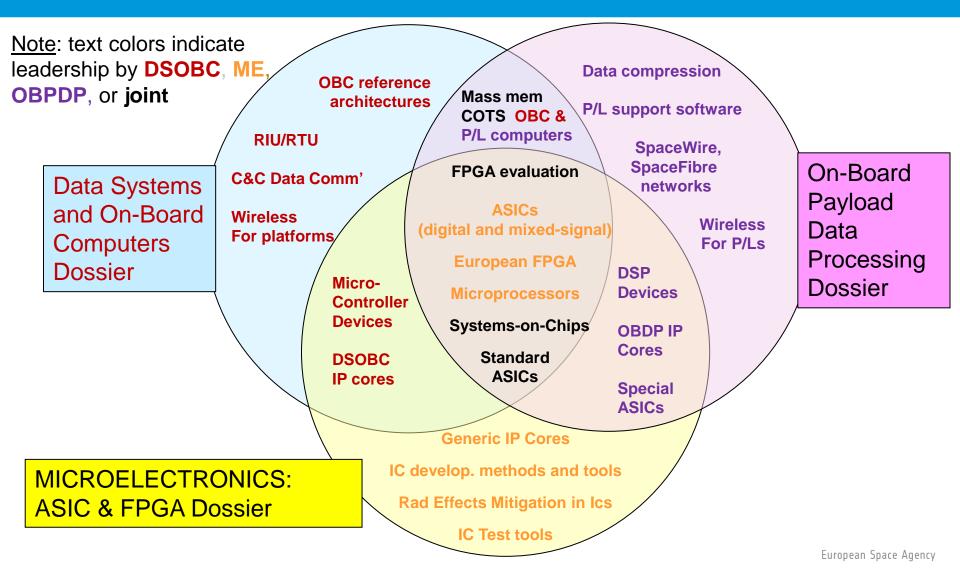
- 1. Technology Overview
- 2. Mission Needs and Market Perspectives
- 3. Proposed Development Approach
 - a. Focus on deep-submicron (65nm and smaller) microchips
- 4. Closing Remarks

Technology Overview



Avionics Embedded Systems dossier: roadmap listing Avionics level crosssectorial activities and sectorial activities with a cross-sectorial scope

Technology Overview: Areas covered in "Microelectronics: ASIC & FPGA dossier"



ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon

Technology Overview: Synergies among the three Data Systems Dossiers

MISSION NEEDS/MARKET PERSPECTIVES European strategic interest

- availability of European space ASIC and FPGA technology in general, at competitive prices
- miniaturisation and speed/power optimization
 - make advances in the performances and functional capabilities of our satellites (e.g. DSM ASIC for next generation Telecom payloads)
 - maintain and increase competitiveness of European satellite equipment manufactures
 - minimize the dependency on export restrictions and overhead (e.g. US ITAR parts)
- trend: manufacturing in Asia, with cheaper labour costs and national incentives for foreign capital investment facilitates a better and more sustainable business model
 - European strategic interest that all ASIC/FPGA capabilities (design houses, manufacturing and test) remain secured and sustainable in Europe.
 - While in parallel there is a European strategy to work with Asian Fabs

MISSION NEEDS/MARKET PERSPECTIVES FPGA

- steady increase in the use of FPGAs versus more or less constant use rate of new and existing catalogue ASICs and ASSPs.
 - > IP Core-based SOC design is also experimenting an increase
- FPGAs used in space is dominated by US one-time-programmable technologies
- Rad hard reprogrammable FPGAs received a slow uptake by the space community.
 - Reasonable parts costs shall be a major requirement in the European FPGA development
 - The upcoming family of European BRAVE FPGAs offers potential for a much wider acceptance, as well as the new Microsemi FLASH-based reprogrammable parts.

According to the implementation of the **previous (2011) roadmap** :

- > 33 ESA activities are "funded" or "partially funded" for a budget of about 24M€.
- > 37 additional ESA activities that were not part of the 2011 Roadmap, amounted to ~ 24.5 M€.

Total of 70 ESA activities approved since 2011 for a budget of 48.5 M€

So, the yearly reference (total budget of all relevant activities approved since the previous Roadmap divided by the number of years (6 years, as of December 2015):

Yearly reference budget = 8M€

ROADMAP Aims (1/2)

Aim A: Digital ASIC technologies

 European deep submicron technologies 65nm and 28nm or beyond, evaluation of radiation effects in these technologies.

Aim B: ASIC/FPGA Design methodology and IP Cores

 fault injection tools, HW-SW SoC co-design, various digital and A/MS new IP Cores, tools to optimise design of systems combining FPGA and Microprocessors, multi-core multithreading, timing predictability, fast simulation with Virtual Platforms and ESL, etc.

Aim C: Analogue and mixed-signal ASICs, ADC/DAC

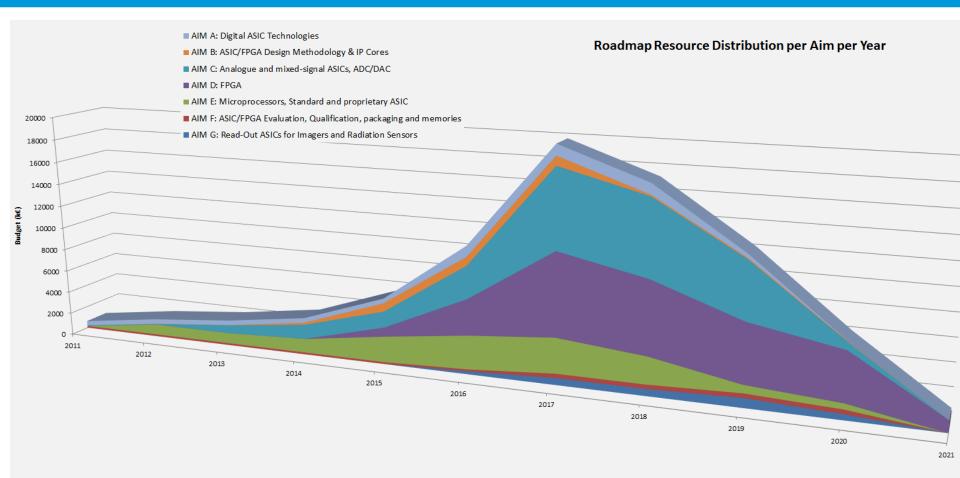
 multiple ADC and DAC ASSP developments and standard standalone devices; A/MS design kits and ASIC platforms like IMEC-DARE, Atmel-ATMX150RHA, or IMST/XFAB

Aim D: FPGA

 new European reprogrammable BRAVE FPGA family (65nm, 28nm or beyond), tools to optimise radiation behaviour reprogrammable FPGAs

Aim E: Microprocessors, Standard and proprietary ASICs

 Maintaining, improving, developing, evaluating or qualifying Microprocessors, "Standard ASICs" (or ASSPs) and other proprietary ASICs (with potential for reuse)


Aim F: ASIC/FPGA Evaluation , Qualification, packaging, memories

Aim G: Read-Out ASICs for Imagers and Radiation Sensors

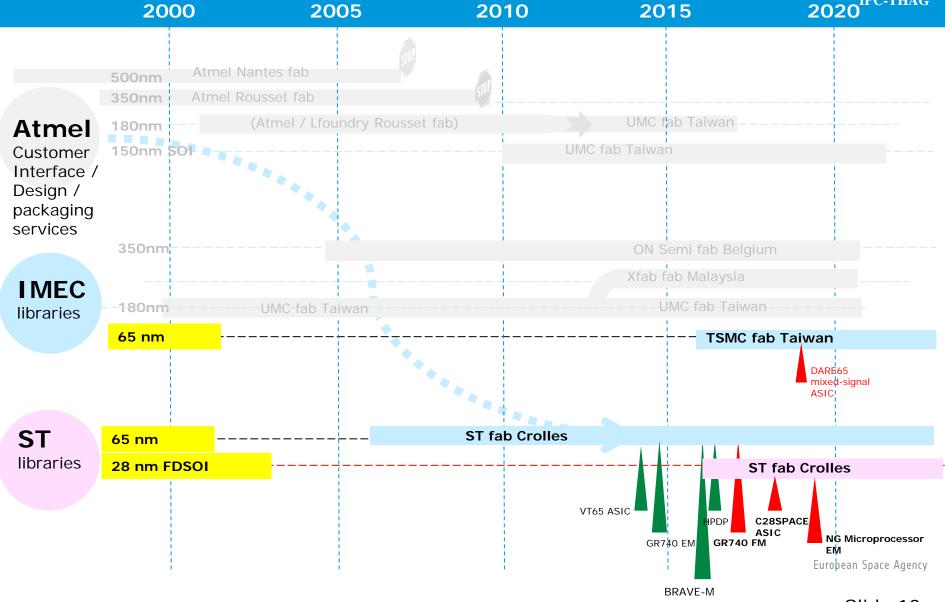
 new AIM in the 2016 dossier. activities for maintaining, improving, developing, evaluating or qualifying microelectronic technologies needed for imagers, radiation sensors, namely read-out ASICs.

ROADMAP Proposed development approach: Resource Distribution

European Space Agency

ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon

Overview of 2016 Roadmap ASIC & FPGA CSA activities

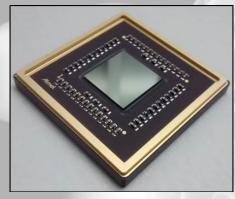

- 1- Standard ASICs & processors (DIGITAL and Mixed-Signal) 21 running activities
- 2 ASIC technology 6 running activities
- 3 IP Cores, FPGA, IC design and test tools & methodology 14 running activities

46 new activities being proposed in "Microelectronics: ASIC & FPGA" harmonization dossier 2016 (many in synch with "CTB/ECI5" roadmaps).

There are also many ASIC/FPGA/IP Core/uC/DSP activities in OBPayloadDS and DSOBComputer dossiers

European DSM processes & libraries for space microchips: 65nm and below

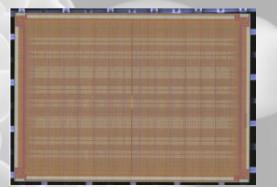
ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon


recent examples of European DSM chips

brains processing the DATA inside our satellites

2015

2015


VT65" Telecom payload processor 200 mm² 1752 pins

TAS/ST/Atmel/E2V/CNES

NGMP/GR740

General Purpose Microprocessor 70 mm² 625 pins Cobham Gaisler/ST/E2V/ESA

2016

BRAVE FPGA

General Purpose Reprogrammable 170 mm² 625 pins NanoXplore/ST/ESA/CNES

All manufactured with 65nm rad-hard microchip technology provided by STMicroelectronics & partners European Space Agency

ESA UNCLASSIFIED - For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon

European DSM processes & libraries for space microchips: 65nm and below

Accomplished

STMicroelectronics mature design kit/libraries (C65SPACE)	7M€ ESA & CNES 8 yrs
first users and products (VT65, NGMP, BRAVE-M)	

On-going	
Space Flip-Chip packaging	1.8M€
HPDP ASIC	480K€
DDR IP	900K€
IMEC development of mixed-signal DARE65	3M€ 2016-2019

ASICS

Next	Support Needed !
C65SPACE ESCC* Qualification (wire bonding and flip chip)	1.5M€
Development and evaluation of C28SPACE (28nm)	1M€
DARE65 Analogue IPs (GSTP+TRP)	3.5M€

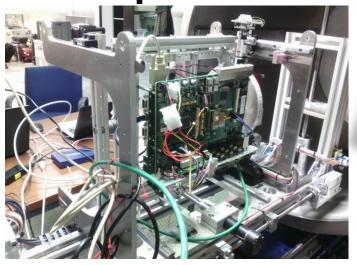
* European Space Components Coordination, https://spacecomponents.org/

& CNES

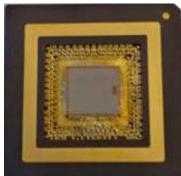
European DSM processes & libraries for space microchips: 65nm and below

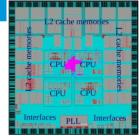
L2 cache memories

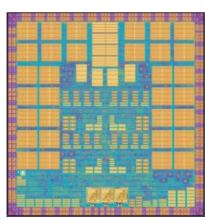
System


IPC-THAG

Accomplished		Micro- processors	CPU CPU CPU CPU Dieface PLL Interfaces
GR740 Engineering Model (4xLEON4 + peripherals)	2.6M€	On-going	
component manufactured end 2015 with ST	11 yrs	Finish GR740 validation	Next Support Needed !
C65SPACE Software	1.4M€	HW optimisation for performance,	GR740 FlightModel & ESCC2M€Qualification
benchmarks, multi- thread, time- predictability	5 yrs	time-predictability SW environment tools optimisation	High Performance Space Microprocessor: 1.5M€
		for performance, time-predictability, debugging	GR740-HP (Eng. Model)
		aadaggiiig	Qualification of new/complementa ry GR740 SW1M€ tools & Operating

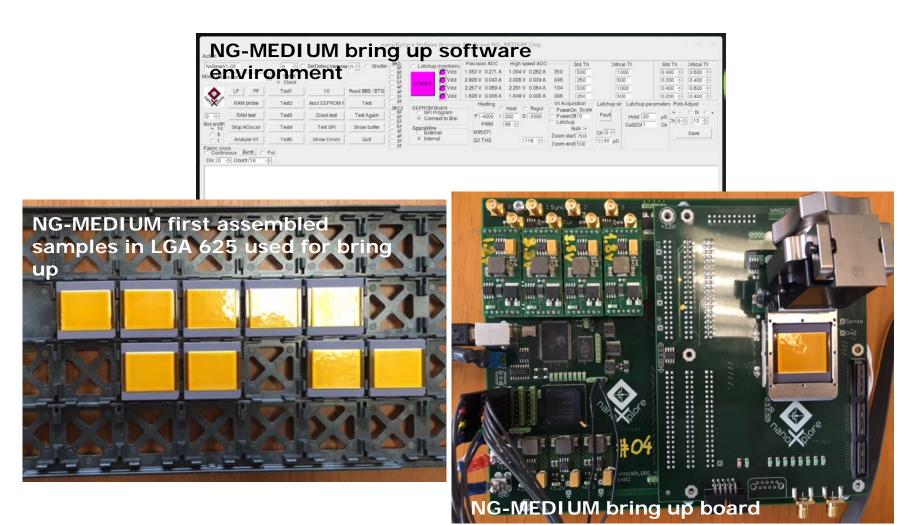

European DSM processes & libraries for space microchips: 65nm and below


GR740 4xLEON4 Micro-processor



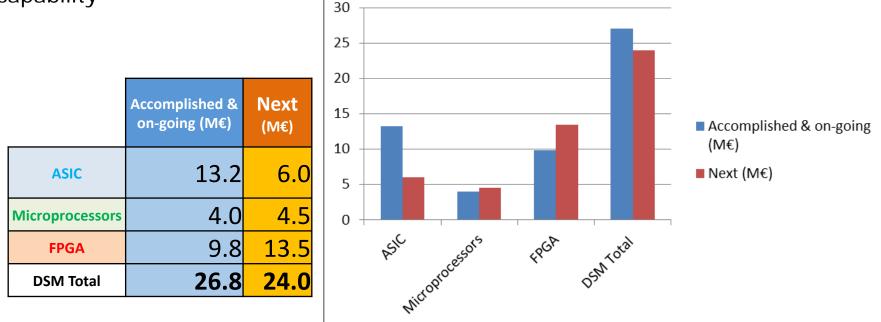
GR740 SEE tests June 2016

1614 COBHAN GR740-XX Cobham Gaisler AB


GR740 Evaluation boards

ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon

BRAVE NG-MEDIUM Bring Up



European Space Agency

CONCLUSIONS on European space DSM

- Deep Submicron (65nm and smaller) ASICs, FPGAs and Microprocessors enable higher performance, miniaturization and less power consumption than older microchip technologies
- First microchips have been manufactured: VT65, GR740, BRAVE-M...
- Urgent new investments needed to finish and qualify 1st products and tools, to develop next generations and more mixed-signal DSM ASIC capability

Closing remarks on ASIC & FPGA Roadmaps

- ASICs and FPGAs are key for all missions
- ME dossier has been updated to reflect inputs from industry and delegations, and better coordination between dossiers
- New roadmap has been compiled and consolidated
- More FPGAs and fewer ASICs, as gate capacity and performance increases and because differences in price (NREs and per part) and development time
- European space ASICs vendors with European rad-hard libraries and IP, some manufacturing in Asia (fabless), but
 - Many silicon fabs still in Europe, strong in niche, specialized, mixed-signal
 - huge dependence on US (ITAR) space FPGAs (all manufactured in Asia).
 - Many European ASIC/FPGA design groups and test houses with space knowhow
- European supply chain fragmented and international ownership makes space quality control difficult
- Technology changes call for updates and tailoring of old quality standards
- Space complex general use ICs difficult/expensive to develop and maintain, market sustainable only by parallel commercial (non-space) high volumes, and institutional (Agencies and EC) support

European Space Agency

-> important to coordinate and harmonise efforts and priorities

ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon

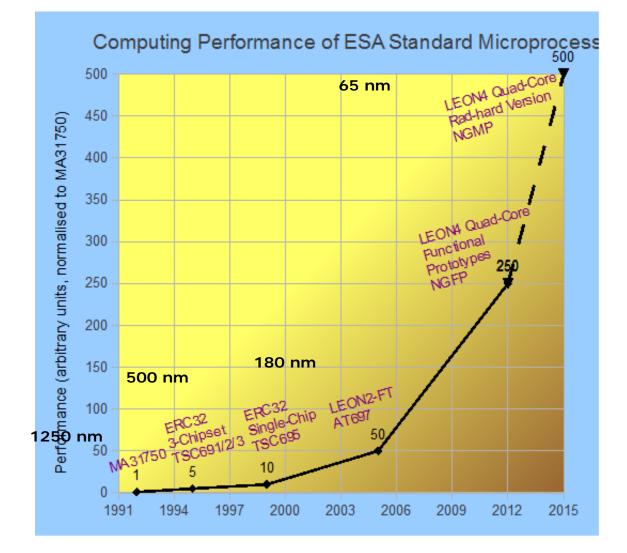
More info

ESA Microelectronics section activity:

http://www.esa.int/TEC/Microelectronics

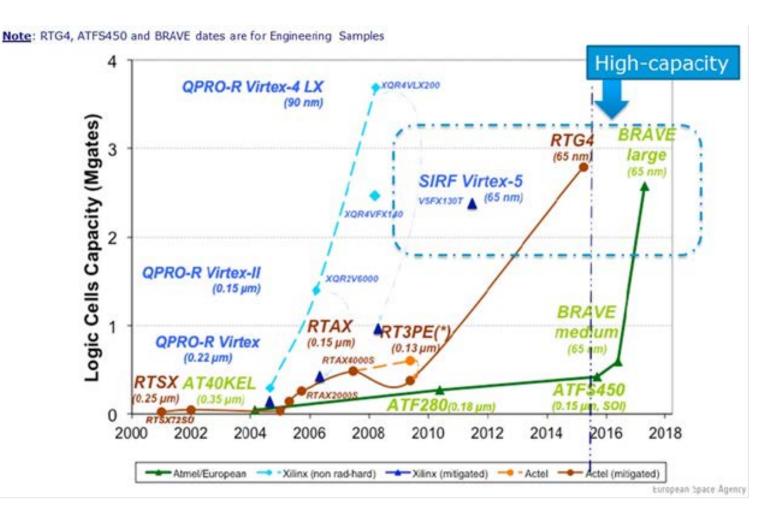
Technology harmonisation dossiers will be available here:

http://www.esa.int/Our_Activities/Space_Engineering_Technology/About_st rategy_and_harmonisation


https://tec-polaris.esa.int/pls/adm/webloginext.login

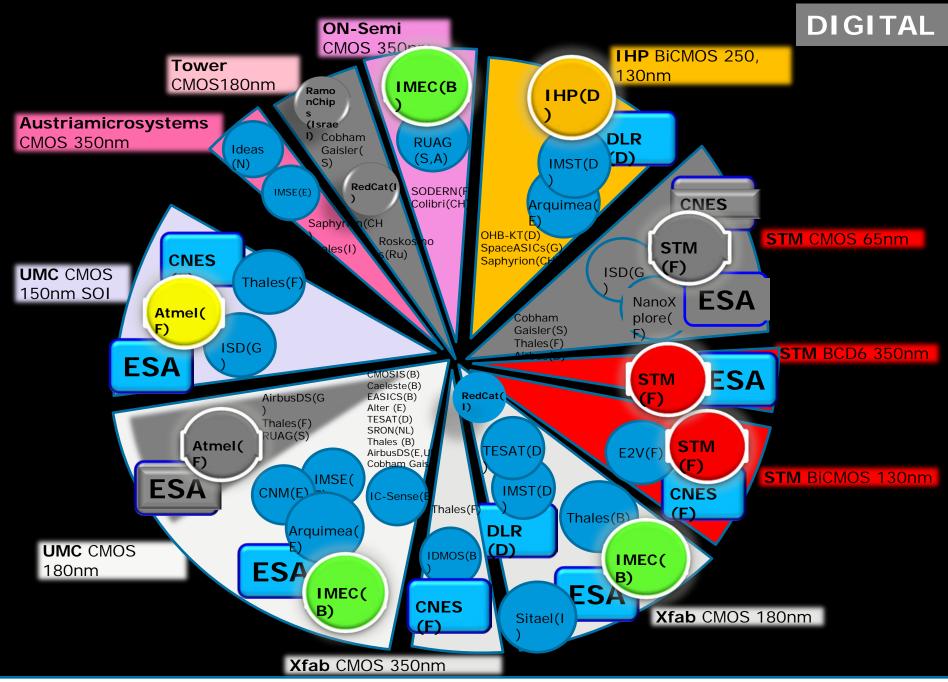
BACK UP SLIDES

Microprocessors: better performance thanks to DSM technology



European Space Agency

ESA UNCLASSIFIED – For Official Use | ADCSS 2016 | 18-10-20016 | Microelectronics roadmap | A. Fernandez Leon


FPGAs: better performance and functional capacity thanks to DSM technology

European Space Agency

Space ASIC Technology Observatory (draft 2 – Jan 13th 2016)

