ADCSS2016 Compact SAVOIR OBC

Patrik Sandin, Torbjörn Hult Chief Engineer, Digital Product Unit RUAG Space AB

RUAG Space Products

Launcher Structures & Separation Systems

Satellite Structures, Mechanisms & **Mechanical Equipment**

Digital Electronics for Satellites and Launchers **Satellite Communication Equipment**

- Launcher Fairings & Structures
- Payload Adapters & Separation Systems
- Sounding Rocket Guidance

- Satellite Structures
- Satellite Mechanisms
- Sliprings
- Mechanical Ground Support Equipment
- Thermal Systems

- Satellite & Launcher Computers
- Navigation Receivers & Signal Processing
- Receivers & Converters
- Antennas

RUAG Space – 11 sites wordwide

RUAG Space and mega constellations

Satellite dispenser

Satellite structure for mega constellation

Compact SAVOIR OBC

MLI

Payload Interface Unit

RUAG Space mega constellation satellite electronics

We have:

- 40 years of experience in high-reliable launcher and satellite electronics.
- a design database with existing qualified SW and FPGA IP-modules
- an internal certified and customer audited design process for high-reliable electronics
- a high quality and high efficiency electronics production facility already today capable of producing large series industrial electronics

Our approach is to:

- reuse the existing design data-base, design processes and production facility
- Use a mix of high-rel components with up-screened commercial components.

This enables us to offer:

- Reliable data handling products with low risk
- Significantly lower prices and higher performance than the corresponding highrel products

High-rel vs COTS

Function	High-rel implementation	COTS implementation
Processor	Rad-hard LEON 2	Commercial processor
Processing memory	Space graded SRAM or SDRAM	Commercial DDR2 RAM
Non-volatile memory	Space graded EEPROM and PROM	Commercial NAND FLASH
TM & TC	Rad-hard ASIC	Commercial FPGA
Reconfiguration	Rad-hard ASIC	Commercial FPGA
I/O controller	Rad-hard ASIC	Commercial FPGA
Analogue and AOCS I/O	Rad-hard transistors, op-amps, comparators, PWMs	Commercial transistors, op-amps, comparators, PWMs
Power Supply	Rad-hard MOS-FETs, diodes	Commercial MOS-FETs, diodes
GPS function	Stand-alone equipment	Integrated, commercial FPGA, GNSS RF receiver and on-board SW

Radiation

Primarily, only parts with an established radiation pedigree are used

Commercial parts can provide sufficient radiation tolerance for LEO orbits and in some cases even similar tolerance as rad-hard parts

Additional measures if radiation pedigree not available

- Radiation testing of candidate parts
- Shielding (additional metal around sensitive parts)
- Mitigation techniques, including: redundancy, software tasks, EDACs, TMR, current limiting and power cycling

Parts Reliability

Challenges when using commercial parts Lack of traceability

- Testing over full temperature range
- Limited testing and no screening for infant mortality
- Different die designs from different foundries with the same part number
- Radiation performance and data are limited and may pertain to an obsolete die
- Lack of change control due to poor communication with the foundry

The gap can be partly filled by using automotive components.

Electronics

Military grade electronics

- Unknown radiation tolerance
- Large temperature range
- Reliable and traceable
- Expensive

Space grade electronics

- Radiation hard or tolerant
- Large temperature range
- Reliable and traceable
- Very expensive

Automotive grade electronics

- Unknown radiation tolerance
- Reliable and traceable
- Cheap

Commercial grade electronics

- Unknown radiation tolerance
- ➤ No traceability to lot
- Very cheap

Compact SAVOIR OBC

Functions

- General purpose COTS processor
- Telecommand, Telemetry and OBT
- AES authentication and decryption/encryption
- Software independent Reconfiguration unit
- Standard and AOCS I/O
- Integrated single frequency GPS receiver
- Secondary power distribution
- Platform and payload communication

Characteristics

Physical dimensions: 240x100x200 mm

Mass: 2.8 kgPower consumption: 22 W

Processing performance: 1800 DMIPS

800 MFLOPS

Memory resources: 512 MiB RAM

512 MiB NVM

➢ GPS position error: <10 m_{RMS} 3D

Navigation startup: 5 min.(warm)

10 min.(cold)

Discrete analog TM: 20 inputs

Designed life-time: 6 years LEO

Reliability: <1100 FITS @ 30°

Integrated GNSS Receiver

- ➤ 12 GPS L1CA Channels
- Cold start: < 10 minutes</p>
- Warm start: < 5 minutes</p>

High Volume Space Electronics Production

■ Manufacturing

Multi Chip Module Technologies
Surface Mount Technologies
Plated Through Hole Technologies
Electrical & Physical Testing
Environmental testing:

- Thermal Vacuum
- Vibration
- EMC
- Process Development
- Component Technology
- Procurement
- Analysis Laboratory
- Clean Room

2.700 m2 class 100.000 (ISO Class 8) 200 m2 class 10.000 (ISO Class 7)

Ready to take the leap!

Technology	TRL
High Reliability Failure Tolerant Architecture	
Processing function	
Reconfiguration Unit function	
TM/TC function	
OBT function	
Power Bus Interface and Power supply function	
Digital I/O function	
Analog I/O function	
GPS receiver function	
Unit mechanical concept	
RTEMS Operating System	
Boot Software	
Hardware Driver Software	
GPS Navigation Software	

