
1

www.bsc.es

Francisco J. Cazorla
Director of the CAOS group @ BSC

francisco.cazorla@bsc.es

Mixed-Criticality Systems (MCS):
Introduction and State of Practice

October 19th, 2016

10th ESA ADCSS Workshop: Avionics Data
Control Software Systems

22

Motivation

Mixed-Criticality Systems
– Motivation (need for) and definitions

Criticality and Safety Standards
– Introduction
– Implications on HW/SW design

MCS
– Concepts (Pillars) for their realization of MCS in other domains
– Automotive and Avionics

(Some) Open challenges

Francisco J. Cazorla

3

www.bsc.es

MCS: Motivation, Definitions and Need for

Francisco J. Cazorla

44

Mixed Criticality Systems (MCS)

Embedded Computing System that encompasses the
execution of several application functions that

1. are subject to different criticalitites and
2. share computation and (or) communication means

Francisco J. Cazorla

Comp.
element

Comp.
element

Comm. element

AppA AppB AppC

55

Trends is SW size (and complexity)

Francisco J. Cazorla

Avionics *source: Airbus
Space *source: Nasa

Growing
automation

Automotive

Advanced driver assistance

Autonomous
missions

66

Motivation and Threat

The ability to run on the same hardware applications with
different criticalities helps reducing Space, Weight and Power
(SWaP) costs
– This aims at improving the performance/cost ratio of the system

However, it must be factored in the potential increase in V&V
and certification costs due to MCS execution

Francisco J. Cazorla

7

www.bsc.es

Criticality and Safety Standards

Francisco J. Cazorla

88

Criticality and Safety Standards

Criticality mostly applies in the context of functional safety
– It has been applied to other metrics

Several safety-related standards in different domains

IEC61508 (generic electrical and/or electronic and/or
programmable electronic (E/E/PE))
– ISO26262 (automotive domain)
– EN-50126, EN-50128, EN-50129 (rail domain)

ECSS-Q-ST-80C in Space

DO-178C (SW aeronautics domain) - DO254 (HW
aeronautics domain)

Francisco J. Cazorla

99

Development Cycle and Assurance Process

Development life cycle of a critical system
– Involve defining the list of requirements on the behaviour and

characteristics that are expected from them
– Functional requirements (what the system is expected to do),
– Non-functional properties (safety, security and performance, including

timing and energy constraints)

In order to “ensure” the safety properties a system safety
assessment process is followed

The process varies across domains: e.g. ISO26262 for
automotive

Francisco J. Cazorla

1010

ISO26262

Motivation (partial):
– electronics, both hardware and software, can fail
– evidence must be provided on the fact that risks have been minimized

ISO26262 aims at showing absence of unreasonable risk due
to hazards caused by malfunctioning behavior of E/E systems

It is necessary to assess the residual risk of having faults that
may cause the violation of safety goals
– Biased by hardware
– ‘The software is a different story’

Francisco J. Cazorla

1111

General System Safety Assessment Process

1. Item definition
– Define and describe the item to be dev. and cert.
– Definition  functional requirements, dependences,

environmental conditions

2. Hazard Analysis and Risk Assessment
– Define Op. situations + Op. modes in which item

malfunction results in hazardous events
– Determine safety goals for the item such that

unreasonable risk is avoided
• The risk of a hazardous event is sufficiently low if the

safety goal is achieved
– Determine safety requirements associated with a

hazardous event

Francisco J. Cazorla

1212

General System Safety Assessment Process

3. Formulation of safety goals
– Defined for each hazard and hazardous event

• Systematic evaluation of hazards that may be caused
by the item

– ASIL associated to safety goal (severity, probability
and controllability)

4. Create a Safety Concept
– Derive functional safety requirements from safety

goals
– Safety requirements are allocated to HW and SW

components according to their architectural design
– Define the mechanisms required to

• reduce the risk of the faults or
• to mitigate their effects and
• avoid the propagation of failures

Francisco J. Cazorla

1313

Criticality Assignment

Standard (domain) specific
Result of an analysis in which it is assessed
– the severity of a malfunction,
– the probability of exposing a malfunction
– The controllability of the situation in case of a malfunction occurring

ASIL:
– Quality mgmt (no safety measure

required),
– ASILA,
– …,
– ASILD (highest)
– Factors

• Sj > Si  more severe
• Cj > Ci  more difficult to control
• Ej > Ei more frequent

Bear in mind:
– Severity is not the metric
– Dropping low-critical tasks

14

www.bsc.es

Impact on
Hardware and Software

Components

Francisco J. Cazorla

1515

ISO26262: Hardware /1

Hardware development
– Use safety concept and system design to

derive hardware safety requirements
– Requirements and attributes of HW safety

mechanisms

Hardware evaluation:
– After HW design  design should be

analyzed regarding whether it meets the
requirements from its ASIL

– Obtain failure modes, failure rates and
diagnostic coverage

– These metrics are used for
• evaluation of HW architectural metrics and
• evaluation of safety goals

Francisco J. Cazorla

1616

ISO26262: Hardware /2

Recall criticality applies at system function level (safety goal in
ISO26262)

So the question is: What HW faults have the potential to
contribute to the violation of the safety goal?

Good news:
– Several reliability models exist to quantify the compliance of hardware

components to reliability requirements
– For instance in ISO26262 covers

• Systematic: produced by human error during system dev. and operation
• Random: due to physical causes (wear-our, thermal stress, …)

Francisco J. Cazorla

1717

ISO26262: Hardware /3

Systematic faults: failure rate
– Based on a number of failure modes, each defining the failure rate, λ
– Types:

• Safely ignorable fault (occurrence will not significantly increase the
probability of violation of a safety go),

• Single point fault, in an element not covered by the Safety mechanism that
leads directly to safety goal violation

• Residual fault in an element covered by a Safety mechanism not covered
by element’s safety mechanism

• Multiple point fault (perceived, detected, latent)

Systematic faults: Diagnosis
– The diagnostic coverage of each safety mechanism must be evaluated

to find the faults that can violate the safety goal

Francisco J. Cazorla

1818

ISO26262: Hardware /4

What HW faults have the potential to contribute to the
violation of the safety goal?
– Safely ignorable and multiple point faults that are detected or

perceived, are typically regarded as irrelevant.
• “visible” before they can produce any harm, or they simply cannot produce

any harm
– Instead, single-point faults; residual faults and latent multiple point

faults are critical since they may lead to the violation of the safety goal
with a single fault

The HW is assessed w.r.t its ability to remove failures
– A fault metric is defined for those HW elements whose failures have

the potential to contribute to the violation of a safety goal

Francisco J. Cazorla

1919

ISO26262: Hardware /5

Two metrics are calculated to:
– single-point fault metric (SPFM) and
– latent fault metric (LFM).

SPFM:
– HW item's robustness to single-point and residual faults either by

design or by safety mechanism coverage

LFM:
– HW item's robustness for latent faults either by design, by safety

mechanism coverage or by the driver recognizing that the fault exists
before the safety goal is violated

Targets for the single-point fault metric are as follows:

Francisco J. Cazorla

ASILB ASILC ASILD
SPFM ≥90% ≥97% ≥99%
LFM ≥60% ≥80% ≥90%

2020

ISO26262: Hardware: /6

Failure rate classes 1 to 5 are defined
– Different target failure rates.
– The degree of diagnostic coverage and the ASIL level determine the

failure rate class for the hardware part.
– An ASIL D safety goal requires proving the residual failure rate below

10-7 (failure rate class 4) if the diagnostic coverage is above 99.9%.
– Lower failure rates are required if the diagnostic coverage is lower.
– And higher failure rates are allowed if the ASIL is lower (e.g., C, B).

Probabilistic metric for random hardware failures (PMHF)

Francisco J. Cazorla

2121

ISO26262: Software : Similarities to Hardware

Similar to HW, for SW ISO26262 provides principles for
– software architectural design,
– mechanisms for error detection at software architectural level
– mechanisms for error handling at software architectural level

Each software component must be categorized and
verification techniques applied to it accordingly

Francisco J. Cazorla

2222

ISO26262: Software : Differences

All software faults are systematic

Safety assessment of SW is performed via
a qualitative process
– Confidence figure cannot be put on the reliability of software elements
– The development of a SW element to a certain ASIL does not carries

the assignment of a failure rate for it
– Argue about the acceptability of software based on the suitability of the

development processes followed as recommended by the standard

Francisco J. Cazorla

2323

ISO26262: Software : Differences

At the HW, the coverage of the fault-detection (and correction
mechanisms) are evaluated as well as the residual risk of
undetected potentially-impacting faults

Standards are pretty ‘poor’ about admitting the reality of …
– software having bugs

• If you follow the development standards that  SW does not fail
– software incurring timing violations

• Timing bound: Maximum Observed Execution Time * 1.X
• X such that timing violations do not occur (never)

Francisco J. Cazorla

24

www.bsc.es

Requirements of MCS

Francisco J. Cazorla

2525

Recap

MCS definition:
– Computing System in which applications subject to different

(functional safety) criticalities share computation and (or)
communication means

MCS goals:
– Preserving criticality (safety) characteristics of each individual

application
– Increase a high benefit/cost ratio

• Carefully assess the cost of safety assessment in MCS
and
• put in place measures to reduce those costs

Francisco J. Cazorla

2626

Goals and Pillars

“Demonstration of sufficient independence”
and

“mechanisms to reach this goal”

Examples
– ISO26262: “Freedom from interference”
– IEC-61508-3: “Non-interference between software elements”

Pillars to reach these goals:
– Partitioning
– Monitors

Francisco J. Cazorla

2727

Goals and Pillars

“Failing to demonstrate this  the whole
MCS is designed according to the highest

level of criticality involved”

Cots heavily increase

Benefit/cost ration of MCS decreases

Francisco J. Cazorla

2828

IEC61508: Partitioning

Partition:
– Allows the isolation of SW components
– Reduce V&V costs
– Allows containment of faults

How:
– Physical segregation: 1 SW element  1 HW element (high cost)
– Virtual segregation: Create provisions on the HW to allow SW

components to share the platform

Applications should not interfere with each other behaviour
– Spatial isolation prevents inter-application data/code (functional)

corruption
– Temporal isolation prevents blocking use of resources or using CPU

longer than expected
– Evidence of the absence of interference required by analysing the

system
Francisco J. Cazorla

2929

IEC61508: Partitioning : (Some) Recommendations

Spatial independence:
– HW memory protection
– Virtual memory space
– Rigorous design + source (and object) code analysis

Temporal independence:
– Scheduling Policy:

• deterministic (cyclic scheduling)
• strict priority based scheduling (preventing priority inversion)

– Time budgets
• kills application trying to violate its budget
• No process can clog CPU

– Resource sharing protocol  prevent unwanted locking of resources

Francisco J. Cazorla

3030

DO178C: Partitioning

1. Code/data of a SWc cannot be affected by another SWc

2. A partitioned SWc only allowed to use CPU during its budget

3. Each partition should be able to contain faults (not to
propagate them to other partitions)

4. Partition software has the same or higher DAL than highest
DAL to SWc in any of the partitions

5. Safety assessment to be done in HW so that a failure cause
failure on SW partitions hence affecting system safety

Francisco J. Cazorla

3131

IEC51508: Monitors

Concept:
– Monitors application behaivour (protection against faults)
– Fault detected  trigger an event to active corrective actions
– Prevent the propagation of failures (provision for)
– External monitor running on independent hardware

Benefits:
– Demonstrate separation of concerns
– Reduce criticality of monitored application

Remarks:
– The monitor is as critical as the application it monitors

Francisco J. Cazorla

3232

DO178C: Monitors

Inherits highest DAL of monitored functions

Will detect the intended faults under all conditions (monitor
cover all cases)

Independence between the monitor and the monitored
function required

Francisco J. Cazorla

33

www.bsc.es

Challenges

Francisco J. Cazorla

3434

MCS: Opportunities and Threats

The ability to run on the same hardware applications with
different functional safety criticalities helps reducing Space,
Weight and Power (SWaP) costs

The safety properties of each application are to be maintained

However, it must be factored in the potential increase in V&V
and certification costs due to MCS execution

Goal: improving the performance/cost ratio of the system

Francisco J. Cazorla

3535

Temporal Isolation: Hardware support

Minimum computation power a task will enjoy in a multicore?
– Hardware support proposed to derive bounds
– e.g. carefully shared (among cores) requests queues

• Prevent one task can clog the queue
• A task should have the same available entries under all core counts

ESA activities:
– Multicore OS benchmark
– NPI: Architectural solutions for the timing predictability of the Next

Generation Multi-Processor (NGMP)
– Barcelona Supercomputing Center – Cobham Gaisler

Bear in mind resource reservation  wasted CPU capacity
– More research needed to reduce resource reservation needs

Francisco J. Cazorla

3636

Temporal Isolation: Software support

Hardware support costly and not available in all COTS

SW solutions required to bound contention interference

Goal: “Tasks assigned time budgets and tasks preventing
from using the CPU outside their budgets”
– Works in single-core
– Not enough in multicores

With multicores CPU provides variable computing power
– Corunner tasks determine the ‘amount of’ computation power one can

use’

Francisco J. Cazorla

3737

Temporal Isolation: Software support

Idea to deal with multicore contention
– Characterize tasks in isolation via their PMCs and then derive a model

of the slowdown the can suffer if run together

– Initial models:
• ESA activities (Multi-core Architectures – Cache Structure optimization

for better RT performance) and
• EU PROXIMA project

App1
HW

App2
HW

App3
HW

PMC
reading

PMC
reading

PMC
reading

C
on

te
nt

io
n

M
od

el Performance
Analysis
Report

3838

Monitoring: Prevent a task from blocking a shared resource

Example of shared resource: AMBA AHB bus

– A HW AMBA compatible (master) can lock the bus infinite time and
– the arbiter has not mean to relinquish the grant from the component
– A single request is enough  controlling request count is not enough

Means need to be put in place for controlling bus usage time

Small extension to performance monitoring counter support
ESA activities (Multi-core Architectures – Cache Structure optimization for
better RT performance): BSC and Cobham Gaisler

Francisco J. Cazorla

M1 M2
bus

S1 S2
arbiter

3939

Much more advanced monitors

PMC support to provide further evidence on timing bounds
Cycle contention stack

ESA activities (Multi-core Architectures – Cache Structure optimization for
better RT performance): BSC and Cobham Gaisler

Francisco J. Cazorla

4040

Probabilistic WCET for software

Idea: exceeding a time budget can be seen as a software fault
if it may cause system-level consequences
– Single (pessimistic) WCET estimate that factors all worst-events,

• If something can happen, assume it happens (+20x slowdown observed)
– Use a probabilistic WCET curve that factors in those events that can

happen with a given probability

Francisco J. Cazorla

It is not uncommon that engineers apply a 50% margin  Margin based on
more solid analysis Eases providing evidence of correctness

4141

Probabilistic WCET for software

Incremental SW dev. and integration
– SW from different SW Providers (SP)
– In Early-Design Phases (EDP) each SP is

provided a time budget
• Task execution time depends on its corunners
• Assuming the worst-contention  upto 20x

slowdown observed
Idea:
– Quantify contenders usage of resources
– Derive WCET for the task under analysis under

that assumption
– Deploy quota enforcing mechanisms

ESA project: Emulator of Future NGMP
Multicore (GMV, Rapita, BSC)

Francisco J. Cazorla

τi

Worst possible contention

4242

Probabilistic WCET for software

Complex SW  developed in increments
– In each increment more modules are brought together
– Memory mapping and cache alignment changes across integrations

– WCET analysis can be performed when cache alignments are fixed
• Push WCET towards late design phase (LDP)
• Costly LDP changes

– Obtain reliable early estimates of tasks in isolation execution time
factoring in the impact of different cache alignments

• The same applies to multicores

Francisco J. Cazorla

RTOS
Library L1
Library L2

App. A

RTOS
Library L1

App. B

RTOS
Library L1
Library L2
Library L3

App. A
App. B
App. C

RTOS
Library L3

App. C

4343

Probabilistic WCET for software

ESA activities
– PROARTIS for Space
– Analysis of the suitability of implementing the eviction frequency

limitation technique in the NGMP

PROXIMA FP7 Project

Francisco J. Cazorla

4444

Criticality

It mostly applies in the context of functional safety
Current systems have many other non-functional metrics
– Dependability (e.g. availability, integrity)
– Timing
– Security
– …

Standards do not (clearly) cover criticality when applied to
other metrics
– As an example we have security

• How to add security into 'residual risk‘?
• How to quantify security?

Francisco J. Cazorla

4545

Conclusion

MCS are deployed in several domain already
– Tools are in place for Space (e.g. XtratuM)

The challenge is to deal with new (COTS) hardware features
while increasing certification costs and increase overall
system benefit/cost ratio
– “Monitors are welcome”, but cannot be abused!

Changes in hardware and in software required

Changes in the safety standards too
– Quantify software reliability
– New metrics

Francisco J. Cazorla

46

www.bsc.es

Francisco J. Cazorla
Director of the CAOS group @ BSC

francisco.cazorla@bsc.es

Mixed-Criticality Systems (MCS):
Introduction and State of Practice

October 19th, 2016

10th ESA ADCSS Workshop: Avionics Data
Control Software Systems

