Plans for Using Geant4 in Space Elevator Research

Dennis Wright
Director of Studies
International Space Elevator Consortium

12 April 2017

Geant4 Space Users' Workshop

Outline

- A space elevator primer
- Critical technologies
- The research program
- A space elevator simulator
- Conclusion

The Modern Space Elevator

- First scientific concept:
 - Tsiolkovsky, 1895
 - compressive tower
- Modern space elevator a tether, not a tower
 - tensile structure, gravitationally stabilized
- DARPA study (Edwards, 1983)
 - SE is feasible with strong materials
- Discovery of CNTs (lijima, 1991)

Balancing the Forces

Strong Materials

- Carbon nanotubes
 - strong enough
 - long enough?
- Climbers
 - rollers
 - maglevs
- Other materials
 - boron nitride
 - solar
 - already strong enough to build lunar elevator

Climbers

- Estimated speed 200 km/h
 - determined from likely power available
 - will arrive at GEO in 7 days
- Mass of first climber: 20 tons (14 ton payload)
 - later climbers will be bigger
- Crawlers
 - grip the tether with rollers and pull themselves up
 - problem: no currently designed bearing can survive the number of revolutions required for a single journey to GEO
- Maglev/linear induction motors
 - use tether to carry current, set up magnetic field

Power Transmission to Climber

- Solar power
 - for medium and high altitudes
 - should be more than adequate
- Beamed power
 - ground-based lasers or microwaves for low altitude
 - more problematic
 - deep in gravity well
 - atmosphere
- Tether as transmission line
 - could be configured as coax cable, or single strand with AC power

Solar and Ground-based Laser

Simulating the Electromagnetic and Radiation Environment

- Need models of magnetic and electric fields from Earth's surface to 100,000 km altitude
 - Tsyganenko magnetic model best so far
 - Laurent Desorgher's implementation of this used in Geant4 application Planetocosmics
 - several electric field models available
 - some in database form, some as potentials
- Need particle fluxes and types
 - AE9 database latest for electrons
 - AP9 database latest for protons
 - other particle types?

Magnetic and Radiation Environment

Charging

- Spacecraft accumulate charge from space environment
 - charging can be severe, especially if there are loose ends, sharp edges
 - discharge could be strong enough to destroy SE tether material
 - what kind of mitigation should be planned?
 - formerly a Geant4 advanced example: cosmic ray charging for LISA
 - discontinued after G4 9.2
 - but can be extended for space elevator studies
- Use magnetosphere models and AE9, AP9 databases to get particle type and flux
- Use Geant4 EM processes to do interactions throughout SE length

Charging Hazard vs. Altitude

Radiation Pressure

Radiation Pressure

- Space elevator tether typically 1 m wide, 10⁸ m long
 - huge solar sail (10 km square)
- Need to calculate momentum transfer of Compton scattering, photo-electric effect, solar wind
 - with large area facing sun, macroscopic forces will result (~800 N)
 - periodic driving force could result in resonant motion
 - or amplify normal transverse modes of space elevator tether (6.2 days, 10.1 hours, 5.3 hours, 3.6 hours,)
- Need to study effects of
 - angle of incidence
 - orientation of tether face
 - radiation trajectories,

Micrometeorite or Debris Damage

Micrometeorite or Debris Damage

- Novel use of Geant4 to answer this question
 - shoot neutral Geantinos with known or expected distribution of trajectories using particle gun
 - make curved or flat volume for target
 - score hits with weight equal to geometric cross section of debris
 - flag a sever when sum of cross sections exceeds a threshold
- Tether will move and flex over time
 - will this affect damage estimate?
 - can use time-dependent geometry

Radiation Damage

- Doses can be quite high
 - upper bound ~3 MRad/yr (30 kGy/yr) in radiation belts
 - trip to GEO takes 1 week → round trip up to 115 kRad
- More traditional use of Geant4
 - SEE in electronics of climber
 - protection of cargo
- Passengers
 - shielding makes climber heavy → active shielding?
 - Geant4 already being used in this area for space habitats
 - If problem not solved, space elevator will remain a freight elevator

Radiation (and chemical) Damage

- Damage to CNTs
 - can Geant4 DNA physics be applied to CNTs?
 - much simpler geometry than DNA, simpler chemistry, too
 - at least one group already working on this
 - monatomic oxygen in upper atmosphere – physical dynamics of 1 km/s impacts and chemical attacks on CNT structure

A Space Elevator Simulator

- Major goal for International Space Elevator Collaboration (ISEC): a software simulation tool for design and operation of a space elevator
 - everything mentioned above: dynamics, electrodynamics, radiation effects, etc.
- Need a software framework to accommodate
 - different types of tether dynamics code
 - radiation simulation
 - magnetosphere models
 - databases
 - visualization
 - user interfaces

A Space Elevator Simulator

- Year-long study now underway in ISEC to specify use cases and overall design
 - define its application areas
 - decide how it will be used
 - develop the outline of an object-oriented architecture
 - produce a blueprint for development to be given to a contractor
- Current idea is to build simulator around a math/physics engine like Mathematica, Ansys or Comsol, and Geant4; they will provide:
 - differential equation solvers
 - finite element meshes
 - basic physics packages

Design Exercise

- Start with UML diagrams and listing of base classes
- Model base class
 - derived classes: ExternalModel, InternalModel, Field, Tether, ...
- Tether class
 - derived classes: RigidRodTether, ContinuousTether, ...
 - methods: AttachLoads(), MassProfile(), ...
- Field class
 - derived classes: Gravitational, Electromagnetic, ...
 - methods: GetField(), ...

Conclusion

- Space elevator studies are underway in several places around the world
- The necessary technologies are advancing
- ISEC is taking the first steps to designing a space elevator simulator
- Many of the jobs in this simulator will be handled by Geant4
- Want to join?

Extras

Current Activity in the Field

- International Space Elevator Consortium (www.isec.org)
 - a non-profit (501(c)(3)) group of engineers, scientists, writers and artists
 - yearly studies covering single aspects of SE development
 - annual meeting every August in Seattle
- Japan Space Elevator Association (www.jsea.jp)
 - also a non-profit
 - sponsored Space Elevator Games 2009 (climber competition)
- Obayashi Corporation
 - large general contractor company (Tokyo)
 - currently working on linear motor climbers

Encouraging News Items

- CNT global market estimated at \$3.4 x 10⁹ in 2022
 - current research budgets ~ \$108
 - IBM announced \$3B research effort
- Science Council of Japan proposes to spend \$200M over 10 years on space elevator research
- Survey of Japanese 9th graders showed 100% new about space elevators
 - SE is or has been part of a kids' TV program for many years

Japanese government promotional character