Applications of MRED

R. A. Reed¹, R. A. Weller¹, J. M. Trippe¹, S. L. Weeden-Wright^{1,2}, E. D. Funkhouser³, C. N. Arutt¹, R. D. Schrimpf¹, B. D. Sierawski¹, K. M. Warren¹, L. W. Massengill¹, D. M. Fleetwood¹, M. L. Alles¹, E. X. Zhang¹, M. Asai⁴

- 1. Vanderbilt University, Nashville, TN, USA
- 2. Lipscomb University, Nashville, TN, USA
- 3. Hill Air Force Base, USA
- 4. SLAC, Menlo Park, CA, USA

High-Speed Pulse Capture Setup

High-Speed Pulse Capture Setup and SEU

High-Speed Pulse Capture Setup

High-Speed Pulse Capture Setup

Monte-Carlo Radiation Transport Calculations

- Geant4: a toolkit for the simulation of the passage of particles through matter.
- MRED: Monte Carlo Radiative Energy Deposition
 - first generation Python/Geant4 application
 - Contains the best available physics
- Computes energy deposition from all types of interactions:
 - Primary ion energy loss
 - Coulombic scatters
 - Nuclear reactions

LET Metric and LET Fluctuations

LET: the *average* energy lost per unit path length

LET fluctuations (straggling): the variability in continuous energy loss of a single species and kinetic energy

- LET Fluctuations
 - Increase with decreased collection volume [5]
 - Large for lightly ionizing particles

LET can be a poor representation of the distribution

[5] H. Bichsel, Nuclear Instruments and Methods in Physics Research A, vol. 562, pp. 157–197, March 2006.

Environment Models & LET spectra

- Simplifying assumptions are used to compute SER predictions
 - Ions with the same LET will produce the same device response
 - Create environment model based on frequency versus LET

Physically Informed Environment Spectra

Implications of LET Fluctuations for SER Prediction

- ❑ Over prediction observed for CREME96 at GEO at solar minimum
 - Onset LET is in region dominated by LET fluctuations

GEO Solar Minimum

Onset LET in region where Fluctuations are large

CREME96	SLED
1x10 ⁻⁷ bit-day ⁻¹	2x10 ⁻⁸ bit-day ⁻¹

SEUs from Lightly Ionizing Particles

- Decreasing features sizes have lead to a reduction in critical charge
- With Q_{crit} < 1 fC SRAMs have become sensitive to effects from lightly ionizing particles

Electron Irradiation Results

- 28 nm and 45 nm SRAMs
- 100 keV and 40 keV electrons
- Cross Section = # upsets/fluence
- Reduced bias testing
- Devices were functional at reduced bias

Single-Electron Induced SEU Mechanisms

- MRED Simulations of energy deposition
- Delta ray production required to induce SEUs

Estimated SEU rates: MEO and GEO

- MEO and GEO: SEU rates are dominated by electron environment if device is sensitive to electron induce SEUs
- LEO (not shown): SEU rates are dominated by proton environment even when devices is sensitive to electron induce SEUs

Predicting muon SEU results with MRED

- Muons are produced from interactions between galactic cosmic rays and molecules in the atmosphere
- Terrestrially operated devices with low critical charge may be at risk for muon induced SEUs
- MRED simulations can be used to circumvent expensive muon testing

Heavy ion probing of sensitive regions

- Higher LET ions deposit more charge and can upset a device at distances further from the drain
- Differences between the cross-sections of high and low LET strikes can be used to map out sensitive volumes

Producing SV models with heavy ion data

28 nm SRAM multi-SV model

- Heavy ion data was used to calibrate volumes 2-4
- V1 was calibrated to the peak proton cross-section instead of manufacturer information

Transporting the TRIUMF muon beam

- In order simulation results to test data from the TRIUMF muon beam line, an accurate spectrum must be derived
- MRED simulations were performed transporting the initial muon beam through the materials between the device and the beam and then used in device level simulations

Muon simulations on 28 nm SRAM

- Spectra from previous slide were loaded into MRED
- Muons were simulated striking the device at normal incidence with randomly selected initial positions

AMSAT AO-85 (Fox-1A)

- Launched on board Atlas 5 from Vandenberg, CA as part of ELaNa-12 program, EPSCoR development
- Carries Vulcan payload (1 LEP) with 8 x 4Mb SRAM (ISSI IS64WV25616B) experiment
 - Broadcasts single event upsets, resets, power
- Crowd-sourced science
 - Largest ground network in the world?
- The additional launches planned for 2017 and 2018
 - Delivered spacecraft for two, third will be delivered in July 2017

Image Credit: AMSAT

Image Credit: ULA

Image Credit: ULA

Develop an understanding of the charge generation by pulsed-laser irradiation with sufficient clarity that advanced device response is predictable from first principles physics and design information ?

Background: Laser Testing

 Femtosecond pulsed lasers can be use to produce singleevent effects (SEE) in electronic devices and circuits

NRL group (McMorrow, Buchner, *et al.*) and others have published numerous papers on testing and modeling SPA and TPA (IEEE Trans. Nucl. Sci., 1987 – 2016)

Key References and Acknowledgements

- C. N. Arutt, K. M. Warren, R. D. Schrimpf, R. A. Weller, J. S. Kauppila, J. D. Rowe, A. L. Sternberg, R. A. Reed, D. R. Ball and D. M. Fleetwood, "Proton irradiation as a screen for displacement-damage sensitivity in bipolar junction transistors", IEEE Transactions on Nuclear Science, vol.62, no.6, pp. 2498-2504, Dec 2015.
- E. D. Funkhouser, R. A. Weller, R. A. Reed, R. D. Schrimpf, M. H. Mendenhall and M. Asai, "Limitations of let in predicting the radiation response of advanced devices", IEEE Transactions on Nuclear Science, vol.62, no.4, pp. 1558-1567, Aug 2015.
- B. D. Sierawski, K. M. Warren, A. L. Sternberg, R. A. Austin, J. M. Trippe, M. W. McCurdy, R. A. Reed, R. A. Weller, M. L. Alles, R. D. Schrimpf, L. W. Massengill, D. M. Fleetwood, A. Monteiro, G. W. Buxton, J. C. Brandenburg, W. B. Fisher and R. Davis, "Cubesats and crowd-sourced monitoring for single event effects hardness assurance", IEEE Transactions on Nuclear Science, vol.PP, no.99, pp. 1-1 2016.
- J. M. Trippe, R. A. Reed, R. A. Austin, B. D. Sierawski, R. A. Weller, E. D. Funkhouser, M. P. King, B. Narasimham, B. Bartz, R. Baumann, J. Labello, J. Nichols, R. D. Schrimpf and S. L. Weeden-Wright, "Electron-induced single event upsets in 28 nm and 45 nm bulk srams", IEEE Transactions on Nuclear Science, vol.62, no.6, pp. 2709-2716, Dec 2015.
- S. L. Weeden-Wright, M. P. King, N. C. Hooten, W. G. Bennett, B. D. Sierawski, R. D. Schrimpf, R. A. Weller, R. A. Reed, M. H. Mendenhall, D. M. Fleetwood, M. L. Alles and R. C. Baumann, "Effects of energy-deposition variability on soft error rate prediction", IEEE Transactions on Nuclear Science, vol.62, no.5, pp. 2181-2186, Oct 2015.