

Modeling of Irradiation Effects in sub-N7 CMOS Logic Devices Using Layout-Based Design

Oskar Baumgartner, Markus Karner, Hui-Wen Karner, Christian Kernstock, Franz Schanovsky, Georg Strof Pete Truscott (Kallisto Consultancy)

Model Suite for full Logic Cells

TCAD based analysis of a full NAND Gate: Power, Performance, Area, Variability, and Reliability

GTS Framework – Minimos NT

Semiconductor device simulator

- General-purpose semiconductor
 device simulator
- Planar and non-planar CMOS
- Power electronics based on wide band gap materials

Non-volatile memory

- Mixed-mode simulation
- Discrete traps and dopants

Variability time zero: RDD, MGR, LER Statistical reliability: BTI, HCD

Effects in Emergent Devices

solutions®

global

TCAD

Radiation Effects Prediction Process

Deep Sub-Micron CMOS Radiation Effects (DESMICREX)

Sponsored by ESA to

- develop simulation environment for modelling DSM CMOS radiation effects
- Identify example DSM CMOS technology and implement in test vehicles
- Simulation environment based on Geant4/GRAS operating within GTS Framework with MINIMOS-NT

Significant strides made:

- Version of GRAS which can read-in standard format microelectronics structures and simulate ion tracks
- Cost-effective multi-platform/multi-CPU TCAD Framework to treat mixed-mode MINIMOS-NT +BSIM4

No follow up development on Geant4/GRAS integration

Tool Flow for Irradiation Simulation

Simulation of a single event transient (SET) on an inverter chain (From **device layout** to **circuit simulation**, all set up in less than **1 hour**)

Simulation of a single event up-set (SEU) on a 90nm 6T-SRAM

Modeling of Radiation Effects in Flash Memories

Transnational project started 2016 and funded by

- Austrian Research Promotion Agency FFG
- Chinese Academy of Science

Partners

- Device production and testing by Institute of Microelectronics CAS / Synchrotron Beijing
- Device physics modeling by TU Wien and GTS
- Geant4 integration by Pete Truscott and GTS
- Revamped effort of combining Geant 4 and Device TCAD
 - Great advances in GTS device structure generation
 - Require solution compatible with GRAS license and GTS IP

Requirement for Radiation Effects Analysis and Priority

- 1. Single event latch-up
 - Effects of angle, impact position, temperature
- 2. Single event transients / DSETs + Multiple Transients
 - Effects of angle, position, clock-freq, cross-talk, temperature
- 3. Single event upsets / multiple-cell upsets
 - Effects of angle, position, temperature
- 4. Single event hard error (stuck bits)
- 5. Total ionising dose
 - Intra- and inter-device leakage across STI
- 6. Dose enhancement effects
 - Use of Cu and other high-Z materials

SET - Charge Collection

Spatial generation rate profile

SET - Charge Collection

Contact current over time

SET - Charge Collection

global

TCAD

solutions®

SET – Time Discretization

Contact current over time

SET – Time Discretization

Charge collection over inverse step width $1/\Delta t$

Inverter - SET

Mixed-mode circuit

Inverter - SET

Inverter - SET

Compact circuit

Device structure with net doping concentration

Device structure with interconnects

Device structure with interconnects and grid

Mixed-mode Circuit

Full 6T FinFET SRAM with rate generation profile

Potential profile before impact

Potential profile after impact

	File - Reload Save 3.	Setup Details So	cripting Script_ou	.t⊠ +						
	View Options									
Project 🗵	Show Task ID									T.
💩 irradiation	Show Task Status									2
Script 🔤 🗵	Show Task Runtime		000 III N.C							
009	Show the Host the task is running on									
Vision 🖂	Show columns with constant values	008Mir	nimos	+ 011	Output					
011	Show tasks overview	fstepid 🕨 pos	< 📄 posZ	: 🔛 🕨	VQ 📄 🛚	/Qnot 🔤 🛛	([m] 🔛	z[m] 🔛	y[m] 📄 fa	ctor 📄 min
		1	-3.5e-7		1.466e-03	7.779e-01	-3.500e-07	-3.000e-07	0.000	2.000e01 -2 *
Script 🔤 🗵	Zoom: 🔍 📃 150% 🔍 🍭	2	-3.0e-7		1.466e-03	7.779e-01	-3.000e-07	-3.000e-07	0.000	2.000e01 -1
III 010		3	-2.5e-7		1.466e-03	7.779e-01	-2.500e-07	-3.000e-07	0.000	2.000e01 -1
Structure 🖃 🗷	Design of Experiment	4	-2.0e-7		1.466e-03	7.779e-01	-2.000e-07	-3.000e-07	0.000	2.000e01 -7
012	1	5	-1.5e-7		1.466e-03	7.779e-01	-1.500e-07	-3.000e-07	0.000	2.000e01 -5
Structure 🗔 🗵		6	-1.0e-7							
004	en e	7	-5.0e-8							
	[••[••]••]••]	8	0.0	-3.0e-7 📘	1.466e-03	7.779e-01	0.000	-3.000e-07	0.000	2.000e01 3
RK		9	5.0e-8		1.466e-03	7.779e-01	5.000e-08	-3.000e-07	0.000	2.000e01 5
		10	1.0e-7		1.466e-03	7.779e-01	1.000e-07	-3.000e-07	0.000	2.000e01 6
		11	1.5e-7		1.466e-03	7.779e-01	1.500e-07	-3.000e-07	0.000	2.000e01 6
Ó	Full Grid Design	12	2.0e-7		1.466e-03	7.779e-01	2.000e-07	-3.000e-07	0.000	2.000e01 7
х Ш	195 Experiments	13	2.5e-7		1.466e-03	7.779e-01	2.500e-07	-3.000e-07	0.000	2.000e01 7
Σ	Change Design of Experiment	14	3.0e-7		1.466e-03	7.779e-01	3.000e-07	-3.000e-07	0.000	2.000e01 9
RA		15	3.5e-7		1.466e-03	7.779e-01	3.500e-07	-3.000e-07	0.000	2.000e01 1
L.	Simulator: Server	16	-3.5e-7		1.466e-03	7.779e-01	-3.500e-07	-2.500e-07	0.000	2.000e01 -4
S		17	-3.0e-7		1.466e-03	7.779e-01	-3.000e-07	-2.500e-07	0.000	2.000e01 -3
Z C	📑 localhost:5455 🔹 💽	18	-2.5e-7		1.466e-03	7.779e-01	-2.500e-07	-2.500e-07	0.000	2.000e01 -2
TH		19	-2.0e-7		1.466e-03	7.779e-01	-2.000e-07	-2.500e-07	0.000	2.000e01 -1
ר	missing results	20	-1.5e-7		1.466e-03	7.779e-01	-1.500e-07	-2.500e-07	0.000	2.000e01 -9
10		21	-1.0e-7		1.466e-03	7.779e-01	-1.000e-07	-2.500e-07	0.000	2.000e01 -5
ហ	Dry Run	22	-5.0e-8		1.466e-03	7.779e-01	-5.000e-08	-2.500e-07	0.000	2.000e01 3
	Submit Cancel	23	0.0	-2.5e-7	1.466e-03	7.779e-01	0.000	-2.500e-07	0.000	2.000e01 3
		24	5.0e-8		1.466e-03	7.779e-01	5.000e-08	-2.500e-07	0.000	2.000e01 5
F.		25	1.0e-7		1.466e-03	7.779e-01	1.000e-07	-2.500e-07	0.000	2.000e01 6
AL		26	1.5e-7		7.7/1e-01	1.402e-03	1.500e-07	-2.500e-07	0.000	2.000e01 6
JB .		27	2.0e-7		7.771e-01	1.402e-03	2.000e-07	-2.500e-07	0.000	2.000e01 7
ΓC		28	2.5e-7		7.771e-01	1.402e-03	2.500e-07	-2.500e-07	0.000	2.000e01 7
C)		•								7

Scripting engine / DoE

Time evolution of Q/Qn outputs during impact at various sites

Device top view with DOE ion impact points and min VQn

Summary & Outlook

Layout-Based Structure Generation

- Automated setup for different technologies (FinFET, NW)
- Meshing appropriate for technology and irradiation simulation

Physical Device Simulation for N7 and sub-N7

- Subband-BTE (phase-space) solver for emergent devices
- Capture effects of quantization, ballisticity, scattering

Irradiation Simulation

- Proof of concept implemented with GRAS
- Needs to be ported to Geant4 (ongoing)
- Analytical beam profiles for faster turn around
- Automated DoE allows for investigation of critical points
- Work in progress for flash devices (transnational project)

Acknowledgment

This work is supported by the Austrian-Chinese transnational project MORAFLASH No 850660

